Prospectus: Higher Certificate
Elsenburg Agricultural Training Institute
CONTACT DETAILS

All correspondence must be directed to:

Head: Student Affairs
Cape Institute for Agricultural Training: Elsenburg
P. O Box 54
ELSENBURG
7607

Tel.    +27 21 808 5450/1
Fax.    +27 21 884 4319
Email. training@elsenburg.com
Website. www.elsenburg.com

Applications

Applications on the prescribed application form must reach the Institute by or on 30 June of the preceding year of study. Application forms are available from Student Affairs, or on the Elsenburg website. All applicants must, if required, complete the standardised tests.

Student number

On receipt of new applications the Institute office assigns a unique number to each applicant that serves as identification of the individual concerned so as to simplify future communication. The student number must be used in all future correspondence with the Institute.

Other contact details

Stellenbosch University: Faculty of Agriscience
+27 21 808 4833
Department of Agriculture: Western Cape
+27 21 808 5111

Other training centres

Clanwilliam: +27 27 482 1362
Oudeniqua (George): +27 44 874 8080
Oudtshoorn: +27 44 279 4086

PLEASE NOTE

1. The Elsenburg Agricultural Training Institute reserves the right to amend the Prospectus at any time.

2. Management of the Cape Institute for Agricultural Training accept no liability for any inaccuracies there may be in the Prospectus. Every reasonable care has, however, been taken to ensure that the relevant information to hand as at January 2011, the time of going to press, is given fully and accurately in the Prospectus.
INDEX

Vision 4
Mission 4
General stipulations for the Higher Certificate programme 7

ACADEMIC RULES 9

PROGRAMME FOR HIGHER CERTIFICATE 16

STUDY OPTIONS 17

Content of modules 18
AGRIBUSINESS MANAGEMENT (ABM) 18
AGRICULTURAL ENGINEERING (ING) 19
AGRONOMY (AGR) 19
ANIMAL PRODUCTION (DPR) 20
BIOLOGY (BIO) 21
CROP PROTECTION (GWB) 21
EXTENSION (EXT) 22
NATURAL RESOURCE MANAGEMENT (NHB) 23
POMOLOGY (POM) 23
PRINCIPLES OF AGRICULTURAL SCIENCE (BLW) 23
SOIL SCIENCE (GRK) 24
VITICULTURE (WIB) 24

Other programmes at the Cape Institute for Agricultural Training 25

Higher Education 25
Further Education and Training 26
Vision and Mission of the Elsenburg Agricultural Training Institute

Vision
The leader in quality agricultural training and development in Africa

Mission
Empowering our clients by presenting market driven training programmes that stimulate sustainable economic growth
Elsenburg: a proud tradition

Elsenburg’s history dates back to 1698, when the land was allocated to Samuel Elsevier by Willem Adriaan van der Stel, at that time the governor of the Cape colony. The farm’s successive owners, among whom Martin Melck is probably the best known, built it up to one of the prime farms in the Cape. Martin Melck built the beautiful old manor house in 1761. The farm was sold to the government by the Myburgh family in 1898.

On 1 September 1898 the Agricultural College, the first of its kind in South Africa, opened its doors. Five students received their diplomas at the end of the first academic year (June 1899). During the first fourteen years of its existence the average number of students was 44. During the first World War, however, there was a drastic reduction in applications, with only 8 students studying there in 1915.

In 1926 Elsenburg College of Agriculture and the University of Stellenbosch amalgamated and a two-year diploma course was offered at Elsenburg, with the primary aim of training prospective farmers. In 1927 this course was replaced with a one-year course, which was replaced by practical courses in 1931. In 1939 the two-year diploma course was reinstated. Elsenburg’s relationship of 47 years with the University was severed in 1973 and the Department of Agriculture accepted responsibility for agricultural training at Elsenburg.

An important milestone in 1976 was the establishment of the Diploma in Cellar Technology. Many of South Africa’s winemakers today, received their agricultural training at Elsenburg.

In 1994, with the transformation to a democratic political order in South Africa, the Department of Agriculture: Western Cape was created. The Elsenburg and Kromme Rhee colleges of agriculture amalgamated. The amalgamation placed a great responsibility on the Department of Agriculture to continue and to expand the training offered. A Centre for Further Education and Training was consequently created to address the need for short, practical courses.

The relationship with the University of Stellenbosch was again initiated and since 2004 Elsenburg has been offering a B. Agric programme in association with the University of Stellenbosch’s Agriscience Faculty.

This development is in line with the government’s new academic policy to give tertiary students more mobility between educational institutions. Duplication of programmes is also eliminated. Elsenburg College of Agriculture was renamed on 1 April 2004 to the Cape Institute for Agricultural Training: Elsenburg.

South Africa: an agricultural gem!

The creation of employment opportunities and the provision of sufficient and safe food and fibre of high quality at affordable prices are some of the demands faced by the agricultural sector. The opportunities and challenges in agriculture lie in the diversity of our topography, the variation in our soil, the divergent nature of our climatic regions, and in the expectations of demanding buyers of our agricultural products. Agriculture has to maintain a balance with nature without exploiting natural resources. Our country has an astonishing diversity of fauna and flora that has to be respected, protected and conserved. The agriculturalist is dealing with living and life-giving organisms in such a way that the goal to improve the quality of life of all, will be furthered.

Agriculture in South Africa contributes almost 5% to the gross national product, assists significantly in earning foreign exchange, is an important provider of employment and supplies basic human requirements in food and fibre. Agritourism is becoming increasingly important as an industry and provides an escape for many city dwellers. For each R1 million increase in the final demand for agricultural products, 83 new employment opportunities are created, in comparison with a corresponding figure of only 29 employment opportunities in the rest of the economy. It is generally acknowledged that agriculture has an important role to play in poverty alleviation.
Soil is an important production factor in agriculture. The Republic of South Africa extends over 122.3 million hectares of which 16 million hectares are used for crop production. Around 1.5 million hectares have established trees and 83 million hectares are covered by natural grazing. Soils with optimum physical and chemical conditions are scarce and localized, but there are various unique soil/climate interactions that allow for the cultivation of products for niche markets.

South Africa is a water scarce country. Around 30% of the country receives less than 250 mm rain per year, around 34% receives between 250 and 500 mm, 25% between 500 and 750 mm per year and only 1% of the country receives more than 750 mm of rain per year. In most regions rainfall is uncertain and periodic droughts occur. As a result of these and other factors, South Africa is dependent mainly on catch-dams and subterranean water sources. Just over 1.2 million hectares are irrigated. At present, agriculture is one of the largest users of water, almost 50%, but the farming sector faces increasing pressure for more water for industrial and residential users. Only 10% of agricultural soil is viable without irrigation. Water and irrigation management in South Africa consequently demands thorough knowledge of the subject.

South Africa is an agricultural gem. Due to the varying climatic conditions and topography, practically any crop can be cultivated. The country is currently self-sufficient in most primary food and fibre requirements for its rapidly growing population. Food crops in which there are not yet self-sufficiency, but which grow in large quantities are oil seeds, rice, tea and coffee. More than 33% of our horticultural production is exported, deciduous fruit comprising the largest volume. Further examples of South African exports are subtropical fruit, maize, sugar, vegetables, wine, cut flowers, flower bulbs, mohair and karakul pelts. 81% of agricultural land is natural grazing used mainly for extensive stock farming. This is almost 70% of South Africa’s total area.

A variety of animals are reared: large and small stock, pigs and poultry. Aquaculture and game farming are rapidly growing industries with great potential. After-harvest handling, processing, storing and preserving of products and foods are different ways in which value is added to fresh produce. The ultimate quality of the product enjoyed by the consumer is dependent on the quality of the soil or the animal from which it is derived. Sustainable and responsible pest and disease control is therefore required.

From the above, it is clear that specialised knowledge, expertise, production and management skills are required for sustainable agricultural production. Graduates can enter various careers in agriculture and related sectors. Careers in farming management, cellar technology, research, education and training, consultation, as well as installation management (e.g. cellars) and service delivery (e.g. suppliers), offer challenging options.

The profile of an agriculturalist

The graduate agriculturalist has the necessary knowledge, skills and attitude to function independently, or in a team, in an agricultural environment. This includes the judicious application of science to the management of the value chain of a variety of food and fibre products in an economical, environmentally friendly and sustainable way for the benefit, betterment and welfare of humanity. To make this contribution, the agriculturalist displays the following professional characteristics:

Knowledge

The knowledge of the applicable scientific concepts, the interaction between the biological and abiotic factors in the environment and the basic principles of research methods and methodology. The ability to create new knowledge, generate ideas and act innovatively. The ability to function effectively in an interdisciplinary environment. An understanding of sustainable development and sustainable resource management. Management of information and making informed decisions. A systems approach to the analysis of environmental problems.
**Attitudes**

Respect for the environment and its users. Acknowledgement of own limitations in terms of knowledge and skills. A positive approach to continuous professional development. Involvement in and service to the wider community. A positive example in terms of social responsibility and obligations. Acceptance of and a striving towards the highest academic standards.

**Skills**

The ability to collect, integrate, interpret and apply knowledge and to use this information in problem-solving.

Effective communication with role players from various environments and backgrounds. Sufficient skills to function as an agricultural scientist, either independently or as a member of a team. The ability to interpret and apply relevant subject literature. The ability to utilize relevant resources in the work environment effectively.

*(Information obtained from the University of Stellenbosch Year Book)*

---

**GENERAL STIPULATIONS FOR THE HIGHER CERTIFICATE PROGRAMME**

**Admission requirements**

The minimum requirements for entry according to the new school curriculum are as follows:

- Students must be in possession of a National Senior Certificate as certified by Umalusi
- Students must have a 3 (40% - 49%) in each of FOUR school subjects from the list of recommended university admission subjects
- Students must obtain an aggregate of at least 40% for the NSC.

**LIST of admission subjects**

- Afrikaans OR English (Home Language OR First Additional Language) - 3 **AND**
- Mathematics or Mathematical Literacy - 3 **AND**
- Physical Sciences - 3 **OR**
- Life Sciences - 3 **OR**
- Agricultural Sciences - 3

**PLUS**

one of the following subjects as recommended for admission by the Institute, also on at least a 3

- Business Studies
- Dramatic Arts
- Economics
- Geography
- History
- Religious Studies
- Information Technology
- Engineering Graphics and Design
- Music
- Accountancy
- Consumer Studies
- Visual Arts
Languages (1 language of learning and teaching at an higher education institution and 2 other recognized language subjects)

Life Orientation does not count as a subject for admission to the Higher Certificate programme.

OR

The minimum requirements for admission according to the old school curriculum are as follows:

- A Senior Certificate
- With a minimum of 40% (E-symbol) aggregate and
- A minimum of 40% (E-symbol) on SG for Biology or Science or Mathematics;

General stipulations

Students are expected to familiarise themselves with the prerequisite pass (S), prerequisite (V) and co-requisite (N) requirements for each module. Particulars are provided with the description of modules (see content of modules).

Students should also be conversant with the Academic rules as well as the requirements for re-admission as a student.

ACADEMIC RULES

This set of Academic rules was compiled specifically for the Higher Certificate programme offering of the Elsenburg Agricultural Training Institute.

1. ATTENDANCE OF CLASSES AND ABSENTEEISM FROM CLASSES / PRACTICALS / TESTS / EXAMINATIONS

Students are expected to attend all classes, practicals, tests and examinations. Lecturers keep attendance records, copies of which are submitted every semester to the Director for record purposes.

The following rules apply:

1.1 Absence from lectures

If lecturers are of the opinion that the class attendance of a student during the academic year is unsatisfactory, they may, after the student has been called in and warned, but has not reacted, report this to the Director. The Director will then deal with the matter as he or she deems fit.

1.2 Absence from practicals

1.2.1 Permission for absence is granted only as an exception (see 1.3). The onus then rests with the students themselves to arrange with the lecturer concerned to do the relevant practical component and/or be evaluated.

1.2.2 In a case of absence without authorisation from a practical, students are given a zero mark for any evaluation and also forfeit the right to a later evaluation.

1.3 Authorised absence

1.3.1 Authorised absence is granted only as an exception. Students themselves must
make all relevant arrangements.

1.3.2 Any request for authorised absence must be submitted to the Faculty Management in writing and must include the necessary motivation and/or proof.

1.3.3 Requests for compassionate leave must be arranged directly with the Director or an authorised person from Student Affairs.

2. DETERMINATION OF EXAMINATION ADMISSION MARKS (PREDICATE MARKS)

2.1 Predicate marks are earned through scheduled and non-scheduled tests, assignments, practical tasks and library work.

2.2 In all modules two tests per semester are written during normal class time as a means of continuous evaluation. These tests are the only scheduled opportunities for earning a predicate mark.

2.2.1 Students must write at least two of the tests per module to earn a predicate mark.

2.2.2 If students are absent from such an evaluation opportunity (due to illness or other valid reasons), they forfeit that opportunity. They then have only one opportunity (sick test) in that module presentation left to earn a predicate mark.

2.2.3 If students do not write a test, they are given a zero mark.

2.3 Medical certificates or other documentation will be accepted as excuse for absence during any evaluation provided it is presented within 2 work days after the evaluation. Students then have to write the sick test and no additional test opportunities will be scheduled.

2.4 Exceptional cases will be considered by Faculty Management on receipt of written, well motivated representations by the student.

2.5 Composition of predicate mark:

The scheduled tests: at least 70% of the predicate
Other prescribed forms of evaluation: a maximum of 30%
Non-scheduled forms of evaluation: a maximum of 10% The specific composition is determined by each module.

2.6 A sub-minimum of 50% is required for the practical component. If the sub-minimum of 50% for the practical component is not achieved, students do not earn a predicate.

2.7 A predicate mark of 40% is required for examination admission in ALL modules.

2.8 It is the responsibility of students to ascertain whether they earned a predicate in the various modules, without which they will be denied admission to the examination. Enquiries must be made from the Faculty manager immediately (within 1 work day) after the predicate marks have been made known.

3. EXAMINATION

3.1 Students are examined or evaluated in all the modules for which they register. A valid photo identification should be presented at all test and examinations.
3.2 Examination/evaluation covers the entire field of study of a module. Students are expected to keep themselves informed of the content of required modules (refer to Content of modules).

3.3 Only two 1 - 3 hour equivalent examinations are conducted at the close of each module. The two examinations for a module are known as the main examination and the supplementary examination.

3.4 Examinations are written only during officially scheduled times. Students with examination admission must take advantage of the main examination opportunity.

3.4.1 There are two main examination opportunities during the academic year:

(i) The mid-year examination, during which the main examination on the modules of the first semester is conducted.

(ii) The end of year examination, during which the main examination on the modules of the second semester is conducted.

3.4.2 Supplementary examinations take place immediately after the main examination has been completed:

(i) The supplementary mid-year examination, during which a supplementary examination on the modules of the first semester is conducted.

(ii) The supplementary end of year examination, during which a supplementary examination on the modules of the second semester is conducted.

3.5 If students are absent from the main examination opportunity (due to illness or any other reason), they forfeit that opportunity. The supplementary examination is then the only other and final opportunity to write an examination on that module, and only if approval is granted by the Faculty Management (refer to par. 3.8).

3.6 If students do not write any examination, they are given a zero mark and the module must be repeated.

3.7 Authorised absence of the main examination will rarely be granted.

3.7.1 Students who cannot attend the main examination opportunity must apply in writing for admission to the supplementary examination. Valid medical certificates and/or other motivating documentation must accompany the application and be submitted to Student Affairs at least 2 work days after the main examination opportunity. The decision of the Faculty Management is final.

3.7.2 Students forfeit admission to the supplementary examination if no written applications are received and/or applications are received too late.

3.8 Exceptional cases will be considered by the Faculty Management on receipt of a written request/motivation from students.

4. PASS REQUIREMENTS

4.1 Semester Instruction

4.1.1 A weighted average of at least 50% (predicate mark plus examination mark)
must be attained, in addition to which the following requirements must also be met:

4.1.1.1 The examination mark must comprise 60% of the final mark.
4.1.1.2 A minimum of 40% must be attained in the examination.
4.1.1.3 A sub-minimum of 50% must be attained for the practical if a module consists of both theoretical and practical components.

4.1.2 The final mark is calculated as follows:
Final mark (100%) = Predicate mark (40%) + examination mark (60%)

4.1.3 A mark of at least 50% must be attained in practical as set out in the description of the module-content.

4.1.4 A mark of at least 50% is required in supplementary examinations, irrespective of predicate and main examination marks.

4.1.5 If the supplementary examination is the candidate’s first examination opportunity (see 3.5 a and 3.8), the final mark is calculated as described in 4.1.2.

4.1.6 A mark of at least 50% must be attained in special examinations (as described in 3.8).

4.2 Instructional programme

4.2.1 Refer to 4.1.

4.2.2 All modules required by the teaching programme must be passed. (Refer to Addendum 2: Fields of Study.)

4.3 Pass with distinction

4.3.1 Instructional programme (course) distinction. Students pass a module with distinction if their average mark for all the modules in the programme is 75% or more.

4.3.2 Module distinction. Students pass an instructional presentation with distinction if a final mark for the module is 75% or more.

4.4 Application for re-evaluation of an examination paper

4.4.1 A student who wishes to have an examination paper re-evaluated, must apply in writing at Student Affairs, and pay the required amount at the cashier, within 1 work day of the final results of a module having been made known. No re-evaluation will be considered without the necessary receipt.

4.4.2 All examination papers of students who fail or who qualify for a supplementary examination are moderated before the results are announced.

4.4.3 The re-evaluation of an examination paper is done by external moderators and the results could be made known only shortly before the supplementary examination takes place. A student must therefore prepare him or her for the supplementary examination in case the re-evaluation indicates that there were changes.
5. **ADMISSION TO THE SUPPLEMENTARY EXAMINATION**

5.1 Students are admitted to the supplementary examination if their examination marks are ≥40% and/or their final marks are less than 50%.

5.2 Students who do not write the main examination, forfeit that opportunity. The supplementary examination is then the only opportunity to write that examination (refer to 3.8 and 4.1.5.).

5.3 If students write the main examination they must attain at least 40% in that examination.

5.4 If students earn a predicate mark of ≥ 60% but do not meet the requirement of 5.3, they qualify for a supplementary examination.

5.5 If students do not write an examination, they are given a zero mark. Unauthorised absence will not be accepted.

5.6 If students cannot or do not wish to write a supplementary examination, a zero mark is allocated and the module must be repeated.

5.7 Exceptional cases will be considered by the Faculty Management at their discretion on the timely receipt of a written request/motivation from the student.

5.8 Only one supplementary examination opportunity per module is allowed.

5.9 There is no limit to the number of modules for which supplementary examinations may be written, provided that rule 5.3 is met.

5.10 If students lack only two more modules before they can obtain a qualification or a passing-out level, the Director may grant a Director’s examination.

6. **CONDONATION**

No condonation will be applied.

7. **REPETITION OF MODULES AND CONTINUATION OF THE MODULES**

Students who fail (a) module(s) may repeat the module(s) on the conditions set out in 7.1 and 7.2.

7.1 Repetition of modules

7.1.1 Re-registration for modules is done during registration for the specific semester. Applications for re-admission of students who had to leave the Institute must be submitted before or on 02 January of the re-registration year. Registration can only occur if written proof of re-admission is submitted at registration.

7.1.2 If there are clashes in the test or examination timetable, students have to register the outstanding modules. The students must avail themselves in this regard.

7.1.3 Modules that are prerequisites for subsequent modules must first be repeated and passed in full before subsequent modules may be followed (refer to Content of modules).

7.1.4 Students must repeat, in full, any module for which they did not earn a predicate
mark, as well as any practical component where continuous evaluation is done for which they attained less than 50% (refer to paragraph 1). This includes attending all classes and practicals, the completion of all exercises, tasks and practicals, as well as writing the tests and examinations. Where exercises, tasks and seminars have to be done, students must do new exercises, tasks and seminars (with new subjects or themes).

7.1.5 Students who earned a predicate mark in a module but did not pass, may be exempted from class attendance in the module concerned (at a student’s own risk), with the proviso that 7.1.2 and 7.1.3 apply and that 7.1.7 is also applicable. All scheduled tests must be written, scheduled assignments and seminars must be completed and scheduled examinations written. It stays the student’s responsibility to ensure that he/she is up to date with any rules/ changes/ announcements of the module for which he/she is registered, but not attending classes.

7.1.6 The onus rests on students to keep them informed of the content of modules, changes in the content of modules and of return dates, arrangements and requirements for assignments, exercises, tests and examinations.

7.1.7 When a module is repeated, the student must apply in writing within the first two weeks of the academic year for the exemption of attendance for the practical component. The Faculty Management must give approval in writing. In the case of absence without written approval, a zero mark will be given.

7.1.8 Students may register only twice per module (this includes discontinued modules), after which they must pass to be able to continue with their studies (refer also to par.7.2).

7.1.9 Full registration and class fees, as prescribed, are payable for each module(s) that is repeated.

7.2 Continuation of instructional programme

For the Higher Certificate instructional programme to be continued, the following requirements must be met:

7.2.1 At the end of the first semester of the first year of study, students must pass the modules with a total of at least 30 credits before they are able to register for the second semester. They will receive a written request to discontinue their studies if this requirement is not met.

7.2.2 Students who at the end of their first or third year of study did not obtain the number of HEMIS credits required for the programme in terms of the sliding scale below, will no longer be admitted as student (1 HEMIS credit is equal to the total number of credits required in a specific study year of a programme).

<table>
<thead>
<tr>
<th>Historical years</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>HEMIS-credits</td>
<td>0.48</td>
<td>1.23</td>
<td>2.03</td>
</tr>
</tbody>
</table>

(HEMIS is the acronym for Higher Education Information Management System)

7.2.3 Students who at the end of the first and third year did not obtain 0.48 and 2.03 HEMIS credits, receive a letter of warning that their achievements are not satisfactory and that if their achievements do not improve, they are at risk of not
being re-admitted for further study at the end of the following year.

7.2.4 Notwithstanding any other stipulations, students must obtain in their first year of study at least 0.48 HEMIS credits and in their third year of study at least 0.33 HEMIS credits in order to continue their studies in the following year.

7.2.5 In all study years the requirements in par.7.1.2, 7.1.3 and 7.1.7 must be met.

7.2.6 Students who for the first time in their period of study discontinue their studies before or on 31st of March of a given year, or who, on grounds of academic considerations, are not allowed to continue their studies, will not be debited with such academic year in respect of rules of re-admission. Any further discontinuations by the same students will automatically bring the relevant rules into play in applications for re-admission. This stipulation does not apply in cases of extraordinary circumstances, e.g. justifiable medical reasons (see par.8).

8. READMISSION AFTER UNSUCCESSFUL STUDY

8.1 Students who do not meet the requirements for re-admission to the Institute for the following semester and consequently must leave the Institute, are given the opportunity, at least two weeks before the start of the semester in which the failed module(s) may be repeated, to appeal and show why the Faculty Management should consider their re-admission to their studies. A fully motivated re-application must be drawn up personally by the students and submitted to the Faculty Management. “Fully motivated” means that all relevant information as to the reasons why the students were not successful and why they expect to be successful in their future studies should be included. Such information may be sensitive and personal but students have to take the Faculty Management into their confidence. Where available, documents confirming reasons for their poor performance must be attached. All information will be regarded as strictly confidential. The Faculty Management requires all the information to be able to make a fair decision in the interests of the students. Information for further motivation cannot be provided after an application has been rejected.

The decision of the Faculty Management will be final and a second appeal will not be considered.

8.2 Students who are refused re-admission may, after two years, re-apply in writing to be re-admitted as students. The Faculty Management will only consider fully motivated applications.

8.3 Application for admission to the Institute closes on 30 June of the preceding year of study. If students voluntarily interrupt their studies for a year or longer, they must apply in writing for re-admission by or before the above-mentioned date. The Faculty Management will only consider fully motivated applications.

9. HOSTEL RESIDENCE

9.1 Admission to hostel residence is subject to the availability of rooms.

9.2 Students must apply for hostel residence each year.

9.3 Admission to hostel residence for students who will be repeating is subject to the availability of rooms and screening. Preference is given to academically successful students.

9.4 Re-admission to hostel residence is subject to the HEMIS credits obtained/ years of study.
10. **GENERAL COMMENTS**

10.1 Abbreviation and numbering system for subjects and Modules

All subjects are identified by a subject number. Modules are distinguished by a code, in which the year and the semester of the presentation can be read (except stated otherwise). Refer to Content of modules.

Example:

Agronomy 55565
AGR 130 (10) Agronomical production techniques (3l + 3p)
55565 is the subject number referring to the subject Agronomy. 130 (10) is the module code with a credit value of 10, and (3l, 3p) indicates the lecturing capacity and practicals of the module. The module code 130 refers in the first place to the year (e.g. 1 for the first year of study) in which the module is offered; the second figure (3) refers to different modules of the same teaching presentation (subject) in a specific year of study and the length of the module (a semester or a year), where 1, and 2 refers to modules that are offered in the first semester, 3, 4 and 5 refers to modules that are offered in the second semester and 7, 8 and 9 refers to modules that stretch over a year. The third figure (0) refers to the relative weighting of the module. The lecture load (lectures l and practicals p) per week for each module is indicated in brackets. Lectures and practical periods are 40 minutes long; practical periods are normally combined to form a unit, but may also consist of tutorials and semester presentations.

10.2 Prerequisite pass, prerequisites and co-requisite requirements for modules

Underneath the content of each module the prerequisite pass (S), prerequisite (V) and co-requisite (N) modules will be indicated. A prerequisite pass module is a module that the student must pass in order to follow the module for which it is prescribed. A prerequisite module is a module in which a satisfactory standard (predicate of at least 40%) must be obtained before study in the module for which it is prescribed, may be continued. It has to be passed before the degree can be obtained. A co-requisite module is a module which has to be studied before or in the same semester as the module for which it is prescribed. It has to be passed in an official examination before the degree can be awarded.
## PROGRAMME FOR HIGHER CERTIFICATE
(Also see accommodating Study Options and Contents of Modules)

### FIRST YEAR

<table>
<thead>
<tr>
<th>MODULE</th>
<th>CODE</th>
<th>CREDIT VALUE</th>
<th>NQF-LEVEL</th>
<th>MODULE</th>
<th>CODE</th>
<th>CREDIT VALUE</th>
<th>NQF-LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agribusiness Management</td>
<td>ABM</td>
<td>110</td>
<td>10</td>
<td>Introduction to agribusiness</td>
<td>130</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>INC</td>
<td>5</td>
<td></td>
<td>Components Agricultural Structures</td>
<td>130</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Agronomy</td>
<td>AGR</td>
<td>130</td>
<td>5</td>
<td>Introduction to Agronomy</td>
<td>140</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td>Animal Production</td>
<td>DPR</td>
<td>130</td>
<td>5</td>
<td>Beef cattle</td>
<td>140</td>
<td>5</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Small stock science</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Biology</td>
<td>BIO</td>
<td>110</td>
<td>15</td>
<td>Introduction to biology</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Computer practice</td>
<td>REK</td>
<td>130</td>
<td>5</td>
<td>Basic computer skills</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Crop protection</td>
<td>GWB</td>
<td>110</td>
<td>15</td>
<td>Crop Protection</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>VOL</td>
<td>110</td>
<td>5</td>
<td>Introduction to livelihoods</td>
<td>130</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Communication for innovation</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Natural resource management</td>
<td>NHB</td>
<td>130</td>
<td>10</td>
<td>Environmental studies</td>
<td>130</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Viticulture</td>
<td>WIB</td>
<td>110</td>
<td>10</td>
<td>Soil formation and physics</td>
<td>130</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Chemical processes of soil</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

### SECOND YEAR

<table>
<thead>
<tr>
<th>MODULE</th>
<th>CODE</th>
<th>CREDIT VALUE</th>
<th>NQF-LEVEL</th>
<th>MODULE</th>
<th>CODE</th>
<th>CREDIT VALUE</th>
<th>NQF-LEVEL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Agribusiness Management</td>
<td>ABM</td>
<td>210</td>
<td>10</td>
<td>Planning techniques for agribusiness managers</td>
<td>230</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td>Agricultural Engineering</td>
<td>INC</td>
<td>210</td>
<td>10</td>
<td>Production of wheat</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Spraying machines (calibration)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Agronomy</td>
<td>AGR</td>
<td>220</td>
<td>10</td>
<td>Vegetables under controlled conditions</td>
<td>240</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Cultivation practices and post-harvest handling</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Animal Production</td>
<td>DPR</td>
<td>210</td>
<td>15</td>
<td>Dairy cattle</td>
<td>230</td>
<td>12</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Management of dairy herd</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Sheep management practices</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DPR</td>
<td>215</td>
<td>10</td>
<td>Aquaculture</td>
<td>235</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Poultry production</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Extension</td>
<td>VOL</td>
<td>210</td>
<td>10</td>
<td>Behavioural change and decision-making</td>
<td>230</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Extension profession and Management</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VOL</td>
<td>220</td>
<td>10</td>
<td>Group approach in Extension</td>
<td>240</td>
<td>10</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Programme and Project planning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Botany</td>
<td>POM</td>
<td>210</td>
<td>20</td>
<td>Cultivation of deciduous fruits</td>
<td>230</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Citrus cultivation and Pest and Diseases of deciduous fruits</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Viticulture</td>
<td>WIB</td>
<td>210</td>
<td>20</td>
<td>Wine grape cultivation</td>
<td>230</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Integrated production of wine and table and raisin grape cultivation</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
### STUDY OPTIONS

#### FIRST YEAR

<table>
<thead>
<tr>
<th>ANIMAL PRODUCTION &amp; VEGETABLES</th>
<th>POMOLOGY &amp; VITICULTURE</th>
<th>ANIMAL PRODUCTION &amp; AGRONOMY</th>
<th>EXTENSION &amp; ANIMAL PRODUCTION</th>
<th>EXTENSION &amp; AGRONOMY, VEGETABLES</th>
<th>EXTENSION &amp; AGRONOMY, VITICULTURE</th>
<th>EXTENSION &amp; POMOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 110, 130</td>
</tr>
<tr>
<td>BIO 110</td>
</tr>
<tr>
<td>BLW 110</td>
</tr>
<tr>
<td>EXT 110</td>
</tr>
<tr>
<td>GRK 110, 130</td>
</tr>
<tr>
<td>GWB 110</td>
</tr>
<tr>
<td>ING 130</td>
</tr>
<tr>
<td>NHB 130</td>
</tr>
<tr>
<td>REK 130</td>
</tr>
<tr>
<td>AGR 130, 140</td>
<td>AGR 130</td>
<td>AGR 130</td>
<td>AGR 130</td>
<td>AGR 130</td>
<td>AGR 130</td>
<td>AGR 130</td>
</tr>
<tr>
<td>DPR 130, 140</td>
<td>DPR 130, 140, 150</td>
<td>EXT 130, 140</td>
</tr>
</tbody>
</table>

k = 125  \quad k = 130  \quad k = 140  \quad k = 130  \quad k = 135  \quad k = 135

#### SECOND YEAR

<table>
<thead>
<tr>
<th>ANIMAL PRODUCTION &amp; VEGETABLES</th>
<th>POMOLOGY &amp; VITICULTURE</th>
<th>ANIMAL PRODUCTION &amp; AGRONOMY</th>
<th>EXTENSION &amp; ANIMAL PRODUCTION</th>
<th>EXTENSION &amp; AGRONOMY, VEGETABLES</th>
<th>EXTENSION &amp; AGRONOMY, VITICULTURE</th>
<th>EXTENSION &amp; POMOLOGY</th>
</tr>
</thead>
<tbody>
<tr>
<td>ABM 210, 230</td>
</tr>
<tr>
<td>ING 210, 230</td>
<td>ING 210, 230</td>
<td>ING 210, 230</td>
<td>ING 230</td>
<td>ING 210, 230</td>
<td>ING 210, 230</td>
<td>ING 210, 230</td>
</tr>
</tbody>
</table>

k = 134  \quad k = 120  \quad k = 130  \quad k = 120  \quad k = 134  \quad k = 120
AGRICULTURAL ENGINEERING (ING)

130 (10) Components: Agricultural Structures (4l + 3p)
Practical: Practicing of the basic techniques of welding (arc welding and gas welding)
PP Principles of Agricultural Science 110
210 (10) Irrigation (4l + 3p)
PP Principles of Agricultural Science 110

230 (10) Spraying machines (calibration) (4l + 3p)
Types of machines. Working principles and application. Advantages of different types of pumps, blowers atomizers and hydraulic systems. Calibration examples and formulae.
Practical: Adjustments of different types of machines for calibration of spray in orchards, vineyards, vegetables and grain crops.
PP Principles of Agricultural Science 110

AGRONOMY (AGR)

130 (5) Introduction to Agronomy (2l + 3p)
Introductory overview of the agronomy industry in the Western Cape. Growth and development of small grains. Influence of climate on plant growth. Adaptation of cool weather crops. Physiological aspects of grain yields
P Biology 110, Soil Science 110
PP Crop Protection 110

210 (10) Production of grains (4l + 3p)
Climatic factors, Topography, Soil, Production practices (wheat).
PP Agronomy 130, Soil Science 130
P Biology 110, Soil Science 110

230 (10) Production practices and alternative crops (4l + 3p)
Production practices of Wheat, Barley, Oats, Triticale, Lupins, Canola. Alternative crops.
PP Agronomy 210
P Biology 110, Soil Science 110, 130, Agronomy 130

140 (5) Introduction to Vegetable Production (2l + 3p)
Introductory overview of the vegetable industry in South Africa. Influence of the environment on vegetable production. Seed, Seedling production. The cultivation of cabbage, legume and root crops.
P Biology 110, Soil Science 110, Crop protection 110

220 (10) Vegetables under controlled conditions (4l + p)
The cultivation of vegetables under controlled conditions.
The cultivation of tomatoes and sweet potatoes.
PP Agronomy 140, Soil Science 130
P Crop protection 110, Soil Science 110, Biology 110

240 (10) Cultivation practices and post-harvest handling (4l + p)
The cultivation of lettuce, potatoes, onions, runner crops. The post-harvesting handling of vegetables.
PP Agronomy 140, Soil Science 130
P Soil Science 110, Biology 110

ANIMAL PRODUCTION (DPR)

130 (5) Beef cattle (2l + 3p)
Production systems.
P Biology 110

210 (15) Dairy cattle (6l + 3p)
P Biology 110, Animal production 130

230 (15) Management of Dairy herd (6l + 3p)
P Biology 110, Animal Production 130

140 (5) Small Stock Science (2l + 3p)
P Biology 110

220 (15) Small stock breeding, Wool and Meat Science (6l + 3p)
Reproduction guidelines, Selection and techniques, AI, Record keeping.
Wool Science: The organisation in the shearing-shed. Infrastructure. The physical properties of the wool. The class standards of the NWGA. The physical handling of wool. Trade types / Analysis of shearing reports. Baling and transportation of wool.
P Biology 110, Animal production 140

240 (15) Sheep management Practices (6l + 3p)
Management guidelines for sheep farming in the Western Cape. Ewe and ram management, infrastructure, animal health, feeding, feeding guidelines, strategic feeding, rations, animal health, disease control, parasite control, metabolic diseases.
P Biology 110, Animal Production 140

150 (10) Animal Nutrition (4l + 3p)
Introduction to animal nutrition. Anatomy of digestive systems for monogastric- and ruminant farm animals. Digestion, Composition, Nutritional value, Energy and protein standards of feeds. Practical: Feeding of different farm animals. Introduction to feed formulation
P Biology 110

215 (10) Aquaculture (4l + 3p)
P Biology 110, Animal Production 150

235 (10) Poultry Production (4l + 3p)
P Biology 110, Animal Production 150
BIOLOGY (BIO)

110 (15) Introduction to biology (6l + 3p)
Introduction to biology. Biologically important organic connections. Physiological processes: Photosynthesis; transpiration; cell respiration; growth regulation; food digestion; gas conversion; excretion. Basic genetic studies.

COMPUTER PRACTICE (REK)

130 (5) Basic computer skills (2l + 3p)
Course is presented with the aid of practical, relevant assignments in each section, in which the theoretical concepts are applied and consolidated. Hardware components: Identification and the function of each, putting together a basic system and basic maintenance. Windows: Basic concepts and skills of the Windows operating system, file management, basic Windows programmes. MS Office: Identification of the components of Microsoft Office applications and their uses, import of data/information, formatting of the document and its export. Internet: Connecting to the Internet and its navigation, components of an email, application and navigation. Spread sheets: Navigation in sight page application, importing data, changing data, format, data calculations and formulas, data export.

CROP PROTECTION (GWB)

110 (15) Crop protection (6l + 3p)

EXTENSION (EXT)

110 (5) Introduction to Livelihoods (2l + 3p)
Influence of social and cultural factors on rural dynamics. Differences in innovations and ideas based on cultural norms, values and traditions. Changes and differences in farming conditions and practice and its effect on livelihood. Understanding the “Sustainable Livelihood Approach” and the complexity of farmers’ livelihoods: distinguishing and mapping of capitals, perceiving differences in attitudes and perceptions about risk, uncertainty, quality, safety, etc.; identification of strategies towards sustainability.

130 (10) Communication for innovation (4l + 3p)
Basic principles of communication. Extension, agriculture and rural development. The way adults learn. Ethics and philosophy of extension for empowerment. Target group practices and need identification. Overview of extension practices
P Extension 110

140 (5) Farming Systems and Sustainable Livelihoods (2l + 3p)
Social and cultural factors and efficiency in extension communication. Interconnectivity of farming systems and livelihoods. Farming systems and changing practice: effects on the system and its components. Farm production, food security and risk management.
P Extension 110

210 (10) Behavioural change and decision-making (4l + 3p)
Perception and empathy. Understanding farmers’ practices. Logic in decision making. Extension’s role in decision making. Diffusion adoption theory. Diffusion adoption process.
220 (10) Group approach in Extension (4l + 3p)
Group dynamics: Conditions and reasons, personality features, conflict situations in groups. Leadership: Styles, qualities, leadership and group decision making, delegating, Transparency and accountability
PP Extension 110, 130, 140

230 (10) Extension Profession and Management (4l + 3p)
The quality of Extension service supply and the institutional environment. Extension staff qualities and performance. Extension management principles and skills. Functional networking
PP Extension 110, 130, 140
P Extension 210, 220
C Extension 240

240 (10) Programme and Project Planning (4l + 3p)
Need and importance of effective project planning. Techniques in planning and project management. The programme cycle – Stages and procedures of programme planning. Programme requirements regarding relevance, sustainability and ecological impact.
PP Extension 110, 130, 140
P Extension 210, 220
C Extension 230

NATURAL RESOURCE MANAGEMENT (NHB)

130 (10) Environmental studies (4l + 3p)
The earth - a holistic view. Soil-climate-vegetation relationships with specific reference to SA biomes. The state of South African resources. The philosophy with regard to sustainable agriculture. Introductory ecology
P Biology 110

POMOLOGY (POM)

130 (15) Introduction to Pomology (6l + 3p)
Climatic zones and main production areas. Economic importance, Main markets and competitors of the South African deciduous fruit industry. Stages of tree development. Classification and morphology of deciduous fruit trees. Climate and fruit cultivation, Fertilisation, fruit set, Fruit development and thinning. Introduction to production practices.
P Biology 110, Soil Science 110
C Soil Science 130

210 (20) Cultivation of Deciduous Fruits (8l + 6p)
Production practices, Soil preparation, Fertilisation, Pruning, Irrigation, Weed control and cover crops. Ripening, maturity indexing, harvesting and post-harvest handling of fruit, Propagation and top-working of fruit trees, Rootstocks.
PP Pomology 130
P Biology 110, Soil Science 110, 130

230 (20) Citrus Cultivation and Pests and Diseases of Deciduous Fruits (8l + 6p)
Citrus Cultivation: Introduction, Origin, characteristics and economic importance of citrus, Climatic requirements, Production areas and economic importance, Citrus types, cultivars and rootstocks, Plant material, Citrus cultivation practices, Fertilisation, irrigation, weed control, Pruning, Manipulations to improve fruit set, size and quality, Ripening, maturity indexing, harvesting and post-harvest handling Pests and diseases: Citrus, Pome and Stonefruit
PP Pomology 130
P Biology 110, Soil Science 110, 130
PRINCIPLES OF AGRICULTURAL SCIENCE (BLW)

110 (5) Mathematical calculations (2l + 3p)
Practical: Computerised mathematical subjects available as required for independent development of skills.

SOIL SCIENCE (GRK)

110 (10) Soil formation and -physics (4l + 3p)
Soil and its formation. Soil physics. The organic and biologic fraction of soils

130 (10) Chemical properties of soil (4l + 3p)
P Soil Science 110

VITICULTURE (WIB)

130 (15) Introduction to Viticulture (6l + 3p)
Climate, soil and wine grape areas, Cultivar policy, cultivar properties and plant improvement. Soil preparation for vineyard. Propagation, Planning and establishment of vineyard. Planting widths for wine grapes, Trellis systems for wine grapes
PP Biology 110, Soil Science 110

210 (20) Wine grape cultivation (8l + 6p)
Cultivars and cultivar characteristics of wine grapes. Vine development, winter pruning and summer treatments of wine grapes. Water requirements and irrigation of vineyard. Vineyard cultivation, nutrition, weed control, pests, diseases and abnormalities. Harvesting methods for wine grapes
P Biology 110, Soil Science 110, 130, Viticulture 130

230 (20) Integrated production of wine and Table and Raisin Grape cultivation (8l + 6p)

Table Grape Cultivation: Introduction to table grape cultivation. Planting widths and trellis systems for table grapes. Vine development and pruning of table grapes. Dormancy and rest breaking. Spring and summer practices for table grapes, use of growth regulators. Physiological and other disorders affecting quality of table-grapes. Table grape cultivars and rootstock cultivars. Ripening, maturity indexing, harvesting, and post-harvest handling of table-grapes.

Raisin Grape Cultivation: Production and production areas for raisin grapes, Cultivars and clones for raisin production, Drying techniques.
P Biology 110, Soil Science 110, 130, Viticulture 130
NOTE:

Prerequisite abbreviations
C – Co-requisite
P - Prerequisite - minimum predicate mark of 40% achieved
PP – Pass prerequisite – minimum performance mark of 50% (calculate as predicate x 40% + exam x 60%)

Other programmes at the Cape Institute for Agricultural Training

Higher Education

B. Agric (three years)

Specialise in:
Plant production, Animal production, Plant & Animal production, Cellar technology, Cellar management, Agritourism & Plant / Animal production, Extension & Plant / Animal production

Admission requirements:
Students must be in possession of a National Senior Certificate (NSC) as certified by Umalusi
Students must have a 4 (50% - 59%) in each of FOUR school subjects from the list of recommended university admission subjects
Students must conduct the Stellenbosch University’s access tests (TGT’s)
Students must obtain an aggregate of at least 50% in the ratio of 40:60, for the access tests and National Senior Certificate jointly. The access test average will be made known to students who will be admitted.

LIST of admission subjects

Afrikaans OR English (Home Language OR First additional language) – 4 AND
Mathematics or Mathematical Literacy - 4 AND
Physical Science - 4 OR
Life Science - 4 OR
Agricultural Science - 4 PLUS
One of the following subjects as recommended for admission by the University, also on at least a 4

Diploma in Agriculture (one year)

Modular experience teaching programme regarding Production, Agricultural Management and Natural Resource Management
Admission requirements: Higher Certificate in Agriculture

Diploma in Extension (one year)

Modular experience teaching programme dealing with various aspects of Extension Science, supplemented by assignments.
Admission requirements: Higher Certificate in Agriculture or an equivalent qualification. Also suitable for extension officers in disciplines other than agriculture, e.g. nature conservation, health, social services, etc.

Diploma in Cellar technology (one year)

Modular programme aimed at training candidates as winemakers.
Admission requirements: Higher Certificate with Oenology as a major subject. B. Agric. with Oenology up to second year level.

**Equine studies (two years)**

National Instructor’s Course for Riders (full-time students). Part-time training in general handling of horses, as well as riding lessons for riders. Admission requirements: Senior Certificate. Possession of own horse not essential.

**Further Education and Training**

**Various short courses**

Areas of study:
- General Agriculture
- Vegetable Production
- Fruit Production, Viticulture
- Animal Husbandry
- Agricultural Engineering
- Agricultural Management and Economics, Human and Social Sciences

**Learnerships**

National Certificate in Plant Production NQF level 1 and/or level 4 in the following study fields:
- Viticulture
- Vegetable Production
- Fruit production

As an institution the Elsenburg Agricultural Training Institute is accredited with SAQA (South African Qualification Authority) and AgriSeta.