The Common Agricultural Policy of the EU: up for debate

Aquaculture farming the waters of the Western Cape

Rabbit farming as alternative food security strategy
Readers, let us make the circle bigger,
Feel it. It is here!

This is what AgriProbe is all about!

This volume coincides with the biggest, greatest sporting event on earth - the Soccer World Cup 2010 - hosted for the first time on the African continent. Africans from all walks of life, creed, religion, race, you name it ... a melting pot of diverse cultures.

We bring you contributions from the Minister of Agriculture: Western Cape, Minister Van Rensburg, focussing on Farm Worker Development, whilst the Head of the Department, Ms Joyene Isaacs, talks about whether a farmer registry is necessary or not.

Furthermore, a range of interesting articles, journal inputs and snippets of agricultural successes and achievements were put together, all adding value to sustainable agricultural production systems. Our spread includes excellent research articles, 'socio-economic dynamics' within our ostrich industry from an agricultural economics perspective and Rabbit as an alternative food source, just to name but a few.

Needless to say, we pride ourselves on the development of our human capital, capturing the interest from the very young to giving recognition to those that bring life-long learning and experience to the agricultural workplace.

Let us go out there and do what Mzansi (you, me, South Africans) do best - blow our Vuvuzelas, it's our own! Let us make the agricultural family proud through our continued support of this publication.

We hope you will enjoy this volume!
Land Reform and Rural Development

Message from Gerrit van Rensburg, Western Cape Minister of Agriculture and Rural Development

Land reform and rural development are two aspects receiving lots of media attention lately. This makes sense, as more people are realising how important these two processes are for South Africa’s future wellbeing. But both land reform and rural development are complex and difficult to manage processes. On the other hand, if done correctly, it holds the potential rewards that make the effort more than worthwhile.

Agriculture is closely intertwined with both rural development and land reform. As such, we as a department will become increasingly involved in both processes. Evidence of this is the appointment of a Chief Director: Rural Development, in the Department. We wish Stefan Conradie all the best with the challenges facing him in this regard. Secondly, I have committed the Western Cape to a 60% land reform success rate within the next five years. This commitment impacts directly on each and everyone working for this department. A recent report from the World Bank states that if a country pursues land reform through the open market, at least 67% of the total budget should be allocated towards post settlement support. This highlights the importance of our work in the Department of Agriculture. We play a central role in land reform, as the eventual success will depend on the quality of support provided during the post settlement phase.

Luckily the Western Cape Department of Agriculture is well equipped with talented and motivated staff. I am therefore positive that we will reach, and then surpass, our goals. We are in the position to set the standard for the rest of the country to follow.

My message to all employees at our Department is thus: You can be proud to be associated with this Department. Accept your responsibility regarding the creation of a South Africa where people who are linked to the land, can develop it to its full potential.
The **Common Agricultural Policy** of the EU: up for debate

by Dr Dirk Troskie Agricultural Economics Advisor, Western Cape Department of Agriculture

On 12 April 2010 the EU Commissioner for Agriculture and Rural Development, Mr Dacian Ciolos, announced that the Common Agricultural Policy of the EU (CAP) will be revisited and adapted to be more in line with current and future realities. In the Western Cape, with our own issues, pressures and a hemisphere removed from Europe, we can rightly ask: “So what”? The purpose of this paper will be to venture an incomplete answer to this question and to make an attempt at discussing some implications for the Western Cape Province.

EUROPE STILL MATTERS

Allegations are often made that the Western Cape Province is “Little Europe behind the leaf curtain”. The Province is perhaps not a “Little Europe”, but it does have the characteristics of an island. On the one side the province is bordered by the sea and on the other the semi-desert of the Karoo. While water-based transport is usually some of the cheapest forms of transport (one of the reasons why areas with major waterways such as the Amazon, Mississippi and St Lawrence are so competitive), land transport are relatively expensive. This is especially true if bulk transport systems (such as rail) are not functioning efficiently. It follows that the Western Cape is relatively removed from its main exogenous domestic consumer market (Gauteng), while its seaboard is a double-edged sword. On the one hand it facilitates exports, but on the other hand it exposes local producers to the full brunt of international best practice and competition; just ask the local wheat farmers what it feels like.

The net result of this situation is that the agricultural sector of the Western Cape Province is much more focussed on export than the other provinces of South Africa. After all, the Western Cape Province is responsible for 45% of the value of South Africa’s agricultural exports. These exports predominantly go to the European Union with the Netherlands and the United Kingdom being the first and second most important destination for Western Cape agricultural exports. Germany also finds itself amongst the top five export destinations for our agricultural products. (Provide, 2010).

In the case of individual industries, this link to Europe as a traditional market is even more important. Just ask the local cut-flower and fynbos industries how they experienced the recent flight ban, following the ash outburst of Eyjafjallajökull volcano in Iceland. It is also reported that Germany is the single most important export destination (±60%) for Rooibos (TISA, 2007). In the wine industry, the UK is the destination for more than 27% of wine exports. If Germany and the Netherlands are added to that, more than half of our wine exports go to just these three countries (SAWIS, 2009). Similar arguments can be made for the deciduous fruit and table grape industries.

This important role that exports play in the agricultural sector of the Western Cape is recognised by the Provincial Minister Responsible for Agriculture, as well as by the Provincial Department of Agriculture. For this reason its first strategic goal for the next 5 years is to support the agricultural sector to at least maintain its export position (Department of Agriculture, 2010).

More reasons such as the sophisticated, high-income population of Europe; the high rate of urbanisation; our northern/southern hemisphere advantage; and the relative location advantages vis a vis exporters in South America and Oceania, can be added. Suffice it to say that it is clear that Europe is important for the Western Cape agricultural sector and that it will remain important for at least the next couple of decades. It follows that the debate surrounding the CAP matters.

THE DEBATE SURROUNDING THE NEW ROUND OF CAP REFORM

The official arguments used to motivate the need for a debate on the Common Agricultural Policy of the European Union (CAP) and the changes that will subsequently follow, include the need to respond to the challenges of the time. Specific reference is made to the need for the modernisation of the European agricultural sector, the importance of making it more market-orientated, adaptation to technological changes and the need to face climate related challenges. The differences in the wealth and agricultural practices between the 27 member states of the EU are also used as an argument underlining not only the need for change, but also for an inclusive debate. Nevertheless, the Commissioner for Agriculture and Rural Development argues that the agricultural sector is an important part of the economy and from that perspective the CAP is indispensible for sustainable growth, employment, green growth and intelligent growth.

This public debate will culminate in a conference during July 2010, following which the initial policy guidelines will be published towards the end of the year for further debate. This will eventually lead to a new CAP in time for the next 5-year period after 2013 (Ciolos, 2010).
The Economist (2010) does have a much more cynical view on the reasons behind the changes and the posturing of the various players. It argues that EU citizens are becoming more concerned about visible costs in the form of subsidies, especially now that many countries in Europe are not in the best of financial health. While France is still the biggest beneficiary of the CAP (it receives about a sixth of the €57 billion EU farm budget), its position is increasingly coming under threat with the new (poorer) members of the EU progressively receiving a bigger chunk of the CAP support. The result is that France, rather than being a net beneficiary, may soon become a net contributor to the farm budget. It follows that their previous position as a staunch supporter of monetary support to farmers is changing to one proclaiming more regulation up to the point of, in the words of France’s President, “community preference”. This can be translated into favouring EU products over imports.

It must also be kept in mind that, while the general consensus amongst decision makers are that the EU budget should not be more than 1% of the combined national income, other spending pressures are increasing. The result is that the farm budget declined from about 66% of the total EU expenditure in the early 1990’s to about 40% today.

Of special interest is the fact that the responsible Commissioner, Mr Ciolos, is a Romanian, placing him firmly in the camp of the newly joined members. It follows that he will have sympathy with the aspirations of new members to tap into the farm budget. However, he studied in France with the result that his French is excellent, compared to his average command of the English language (Ciolos, 2009). His French ties are also clear from the way he describes the wisdom of his farmer-grandfather and the relationship between rural development and the vitality of the countryside (Ciolos, 2010). According to The Economist (2010) he, inter alia, favours mechanisms that will support farmers to bypass supermarkets and sell directly to consumers. Another argument proposed by him is that European farmers should be compensated for the higher quality farming products that they provide.

The picture that is developing at the commencement of this debate, is one of aspirations to access the largesse of the CAP budget by certain members, while traditional members are increasingly balking at the costs of the CAP. This is especially true from the quarters of the traditional most vocal proponents of the Policy. Nevertheless, farmers and the economic wellbeing of rural areas still matter (especially in Southern Europe), with the result that overt costs (subsidies) will be transplanted by covert costs (regulatory requirements).

SOME IMPLICATIONS FOR THE WESTERN CAPE PROVINCE

In this paper it was shown that the European Union still remains the most important destination for agricultural produce from the Western Cape. Although it can be argued that shifts will inevitably take place, the EU will remain important for the next number of decades.

The implication is that changes in the CAP are important for the Province and that we should take note of the debate and its implications. The importance of its agricultural sector in achieving its objectives is strongly motivated in the official documentation for this debate. Nevertheless, it can be argued that the position of some of the old proponents is changing and, together with financial and international pressures, monetary subsidies may make way for more subtle limitations.

These changes in position do have certain implications for the Western Cape Province. More specifically:

a) Expect more, not less, regulations. It may get increasingly difficult to enter the EU market.
b) Make sure that we are efficient in executing our regulatory responsibilities and mandates.
c) Capitalise on the regulations and new barriers. The Western Cape has a sophisticated agricultural sector which can respond to changes. This quick response can open a short window of opportunity in the European market.
d) Capitalise on the European sense for location. Western Cape products, imbued with local characteristics, may find a niche in Europe.
e) The Department of Agriculture must be ready to assist farmers to comply.
f) Stop fighting subsidies. We may get what we want. Rather put the efforts into fighting non-tariff barriers.

REFERENCES

Fortunately, aquaculture is the fastest growing animal-food producing sector, providing approximately 45% of food fish, with the balance is still obtained from capture fisheries. The potential for job creation in the private aquaculture sector is therefore considerable.

In contrast to commercial fishing (which is the harvesting of declining wild fish stocks), aquaculture involves cultivating aquatic populations under controlled conditions. In simple terms, aquaculture is the farming of organisms in water. These organisms include finfish, molluscs, crustaceans and aquatic plants. The major commercial freshwater aquaculture species in South Africa include trout, tilapia, ornamental fish, koi carp, African catfish and waterblommetjies. The major marine aquaculture (mariculture) species include mussels, oysters, abalone, dusky and silver kob, yellowtail and algae.

The natural potential for aquaculture in Sub-Saharan Africa is vast, according to the FAO’s State of World Aquaculture 2006 report. However, the region is still a minor participant in fish production, contributing less than 1% in terms of tonnage produced to world aquaculture production. South Africa is the third largest aquaculture contributor in the Sub-Saharan Africa region, after Nigeria and Madagascar (FAO regional review of aquaculture development: 4. Sub-Saharan Africa 2005).

The total South African aquaculture production in 2008 was 3654 tons, worth R327 million. The Western Cape leads in aquaculture production of both freshwater and saltwater species and accounts for 61% of the tonnage (2 233 tons) and 83% value of total South African output in 2008 (Table 1). The Western Cape aquaculture sector currently creates about 1022 full-time jobs and 286 part-time (AISA 2009 Aquaculture Benchmarking Survey: http://www.ai-sa.org.za/newsletter/documents/2009AISABenchmarkingSurvey.pdf).

Table 1. Western Cape Aquaculture volume and value for 2008

<table>
<thead>
<tr>
<th>Life Form</th>
<th>Tons</th>
<th>Total tons</th>
<th>R (million)</th>
<th>Total R (million)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exports</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td>837.5</td>
<td>838.1</td>
<td>243.8</td>
<td>243.9</td>
</tr>
<tr>
<td>Freshwater</td>
<td>0.6</td>
<td></td>
<td>0.1</td>
<td></td>
</tr>
<tr>
<td>Sold in Domestic Market</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Marine</td>
<td>878</td>
<td>1395</td>
<td>25.6</td>
<td>27.1</td>
</tr>
<tr>
<td>Freshwater</td>
<td>517</td>
<td></td>
<td>1.6</td>
<td></td>
</tr>
</tbody>
</table>

(Table adapted from AISA 2009 Aquaculture Benchmarking Survey)

The Western Cape consumes 45% of the trout, 55% of the mussels and 61% of the oysters produced from domestic aquaculture enterprises, which highlights the local demand for aquaculture products.

Table 2. Western Cape marine aquaculture enterprises by species

<table>
<thead>
<tr>
<th>Common Name</th>
<th>Species</th>
<th>Number of Farms</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abalone</td>
<td>Haliothis midae</td>
<td>13</td>
</tr>
<tr>
<td>Mussels</td>
<td>Mytilus galloprovincialis</td>
<td>2</td>
</tr>
<tr>
<td>Pacific Oysters</td>
<td>Crassostrea gigas</td>
<td>3</td>
</tr>
<tr>
<td>Marine fish</td>
<td>Aryromas japonicas (dusky kob)</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Argyrosomus inoduros (silver kob)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Seriola lalandi (yellow tail)</td>
<td>1</td>
</tr>
<tr>
<td>Seaweed</td>
<td>Ulva lactuca</td>
<td>2</td>
</tr>
</tbody>
</table>

a Masiza mussel farming cooperative of 4 production units was recorded as one enterprise
b Seaweed production units that formed part of abalone farming operations were not included separately

(Table adapted from AISA 2009 Aquaculture Benchmarking Survey)
Iture
The abalone industry is the most lucrative aquaculture export sector in South Africa valued at R266 million, which accounts for 81% of the total revenue of the entire aquaculture sector. The Western Cape dominates the abalone industry, with 13 of the 18 abalone farms located in the province (Table 2), worth R228.7 million. Abalone (live, canned, and frozen) is exported mainly to the Far East. The abalone industry is also one of the largest employers in the aquaculture sector, providing full-time employment for over 1,000 people and creating 140 part-time jobs.

Saldanha Bay is the location of the only 2 mussel farms in South Africa. Blue Bay Aquafarm, and its partner empowerment project started in 2002. Masiza Mussel Farm (which comprises of 4 production units working together as a co-operative) produce 800 tons of mussels worth R6 million. Along with La Vie Seafoods, a mussel processing factory, the mussel industry provides employment and small farmer development opportunities to the community strongly affected by job losses in the fisheries sector. There is also enormous potential to expand this industry as there is high demand and a local undersupply, with SA importing mussels from New Zealand.

Another bivalve shellfish that is successfully cultivated in the Western Cape is the Pacific Oyster, an R8.5 million industry in South Africa. Pacific oysters grown in the high-carrying capacity Benguela upwelling system of Saldanha Bay, show rapid growth and high meat quality, compared to those cultured elsewhere in the world. But despite this advantage, South African oysters are an underexploited export product. The oyster industry has not yet reached its full potential, according to local oyster farmers who see scope to expand the market. Currently, oyster spat has to be imported as no local hatchery exists. This means that oyster farmers are subject to the uncertainties of international exchange rates and disease outbreaks as recently reported in France and the USA. The establishment of a local hatchery would be a great boost to the oyster industry, which currently employs 100 people. Future value-adding processes such as gold banding, canning and freezing would also create employment opportunities in the oyster industry.

Bivalve aquaculture is also environmentally sustainable and low-impact since the filter-feeders are low on the food chain, farming does not require animals to be fed and they are also efficient in terms of bioconversion.

As the global average temperature rises and CO₂ levels within the ocean begins to reach saturation, the affect on the oceans’ abilities to absorb carbon will be adversely affected. It will soon become important to consider ways to remove carbon from the oceans. Muscles and oysters play an active role in carbon sequestration and studies to determine the efficacy of shellfish as “biosequesters” (consequently increasing the oceans capacity as a carbon sink) have yielded positive results. The process of biosequestration involves the shellfish secreting calcium carbonate (CaCO₃) to form the shell, thus a percentage of its shell contains stable, fixed carbon which has been removed from the ocean (Hickey 2008). It is evident that bivalve aquaculture has the potential to support South Africa’s commitment to reduce its carbon footprint to help mitigate the effects of global warming.

After abalone, trout production has the second highest rand value in the aquaculture sector, valued at R28 million in 2008 (or 8.5% of the total). It is also the second largest employer in the sector, providing 346 full-time and 163 part-time jobs on the 11 trout farms. The abalone industry is the most lucrative aquaculture export sector in South Africa valued at R266 million, which accounts for 81% of the total revenue of the entire aquaculture sector. The Western Cape dominates the abalone industry, with 13 of the 18 abalone farms located in the province (Table 2), worth R228.7 million. Abalone (live, canned, and frozen) is exported mainly to the Far East. The abalone industry is also one of the largest employers in the aquaculture sector, providing full-time employment for over 1,000 people and creating 140 part-time jobs.

Saldanha Bay is the location of the only 2 mussel farms in South Africa. Blue Bay Aquafarm, and its partner empowerment project started in 2002. Masiza Mussel Farm (which comprises of 4 production units working together as a co-operative) produce 800 tons of mussels worth R6 million. Along with La Vie Seafoods, a mussel processing factory, the mussel industry provides employment and small farmer development opportunities to the community strongly affected by job losses in the fisheries sector. There is also enormous potential to expand this industry as there is high demand and a local undersupply, with SA importing mussels from New Zealand.

Another bivalve shellfish that is successfully cultivated in the Western Cape is the Pacific Oyster, an R8.5 million industry in South Africa. Pacific oysters grown in the high-carrying capacity Benguela upwelling system of Saldanha Bay, show rapid growth and high meat quality, compared to those cultured elsewhere in the world. But despite this advantage, South African oysters are an underexploited export product. The oyster industry has not yet reached its full potential, according to local oyster farmers who see scope to expand the market. Currently, oyster spat has to be imported as no local hatchery exists. This means that oyster farmers are subject to the uncertainties of international exchange rates and disease outbreaks as recently reported in France and the USA. The establishment of a local hatchery would be a great boost to the oyster industry, which currently employs 100 people. Future value-adding processes such as gold banding, canning and freezing would also create employment opportunities in the oyster industry.

Bivalve aquaculture is also environmentally sustainable and low-impact since the filter-feeders are low on the food chain, farming does not require animals to be fed and they are also efficient in terms of bioconversion.

As the global average temperature rises and CO₂ levels within the ocean begins to reach saturation, the affect on the oceans’ abilities to absorb carbon will be adversely affected. It will soon become important to consider ways to remove carbon from the oceans. Muscles and oysters play an active role in carbon sequestration and studies to determine the efficacy of shellfish as “biosequesters” (consequently increasing the oceans capacity as a carbon sink) have yielded positive results. The process of biosequestration involves the shellfish secreting calcium carbonate (CaCO₃) to form the shell, thus a percentage of its shell contains stable, fixed carbon which has been removed from the ocean (Hickey 2008). It is evident that bivalve aquaculture has the potential to support South Africa’s commitment to reduce its carbon footprint to help mitigate the effects of global warming.

After abalone, trout production has the second highest rand value in the aquaculture sector, valued at R28 million in 2008 (or 8.5% of the total). It is also the second largest employer in the sector, providing 346 full-time and 163 part-time jobs on the 11 trout farms. The abalone industry is the most lucrative aquaculture export sector in South Africa valued at R266 million, which accounts for 81% of the total revenue of the entire aquaculture sector. The Western Cape dominates the abalone industry, with 13 of the 18 abalone farms located in the province (Table 2), worth R228.7 million. Abalone (live, canned, and frozen) is exported mainly to the Far East. The abalone industry is also one of the largest employers in the aquaculture sector, providing full-time employment for over 1,000 people and creating 140 part-time jobs.

Saldanha Bay is the location of the only 2 mussel farms in South Africa. Blue Bay Aquafarm, and its partner empowerment project started in 2002. Masiza Mussel Farm (which comprises of 4 production units working together as a co-operative) produce 800 tons of mussels worth R6 million. Along with La Vie Seafoods, a mussel processing factory, the mussel industry provides employment and small farmer development opportunities to the community strongly affected by job losses in the fisheries sector. There is also enormous potential to expand this industry as there is high demand and a local undersupply, with SA importing mussels from New Zealand.

Another bivalve shellfish that is successfully cultivated in the Western Cape is the Pacific Oyster, an R8.5 million industry in South Africa. Pacific oysters grown in the high-carrying capacity Benguela upwelling system of Saldanha Bay, show rapid growth and high meat quality, compared to those cultured elsewhere in the world. But despite this advantage, South African oysters are an underexploited export product. The oyster industry has not yet reached its full potential, according to local oyster farmers who see scope to expand the market. Currently, oyster spat has to be imported as no local hatchery exists. This means that oyster farmers are subject to the uncertainties of international exchange rates and disease outbreaks as recently reported in France and the USA. The establishment of a local hatchery would be a great boost to the oyster industry, which currently employs 100 people. Future value-adding processes such as gold banding, canning and freezing would also create employment opportunities in the oyster industry.

Bivalve aquaculture is also environmentally sustainable and low-impact since the filter-feeders are low on the food chain, farming does not require animals to be fed and they are also efficient in terms of bioconversion.

As the global average temperature rises and CO₂ levels within the ocean begins to reach saturation, the affect on the oceans’ abilities to absorb carbon will be adversely affected. It will soon become important to consider ways to remove carbon from the oceans. Muscles and oysters play an active role in carbon sequestration and studies to determine the efficacy of shellfish as “biosequesters” (consequently increasing the oceans capacity as a carbon sink) have yielded positive results. The process of biosequestration involves the shellfish secreting calcium carbonate (CaCO₃) to form the shell, thus a percentage of its shell contains stable, fixed carbon which has been removed from the ocean (Hickey 2008). It is evident that bivalve aquaculture has the potential to support South Africa’s commitment to reduce its carbon footprint to help mitigate the effects of global warming.

After abalone, trout production has the second highest rand value in the aquaculture sector, valued at R28 million in 2008 (or 8.5% of the total). It is also the second largest employer in the sector, providing 346 full-time and 163 part-time jobs on the 11 trout farms.
farms situated in the Western Cape (Table 3). The small scale aquaculture system has been successful not only with mussels (in the case of Masiza Mussel Farm), but also with the Hands-On Co-operative which involves the freshwater aquaculture of rainbow trout. Twenty three small scale farmers work together as a co-operative to supply the trout processor Three Streams Smokehouse with 1-1.2 kg adult trout, as well as restaurants. Aquaculture facilitates the production of fish of a consistent size and quality that is acceptable by the market. The Hands-On Project was initiated in 2004 by the Division of Aquaculture, University of Stellenbosch and the Technology for Poverty Reduction Programme, Department of Science and Technology to contribute to the economic empowerment and social development of disadvantaged rural communities through aquaculture. The trout hatchery at Jonkershoek is a historic national monument built in the late 1800’s to supply trout for fly-fishing and is now operated by the University of Stellenbosch; it also provides the trout farmers with fingerlings. Fly-fishing for trout has long been a popular recreational activity and some of the farmed trout is still used to populate dams used for the activity. The Western Cape Department of Agriculture acts in an advisory capacity on the Hands-On Co-operative Board.

It is widely known that the decline in global fish stocks has had far-reaching adverse effects. It has resulted in the socio-economic collapse of many traditional fishing industries and communities. As dire as this situation sounds, it also creates out of necessity the opportunity to develop the farming of indigenous aquatic species sustainably and profitably through aquaculture.

All these projects take a pragmatic approach and will address both short-term and long-term issues in the aquaculture sector. The Western Cape Department of Agriculture, Forestry and Fisheries have in the past supported the Aquaculture Institute of South Africa and it is envisaged that the department will play a role in co-ordinating aquaculture development between national, provincial and municipal entities. The department is also supporting the establishment of a “Special Purpose Vehicle” (SPV) for economic development called the Western Cape Aquaculture Development Institute.

Our vision is to promote and support the sustainable and profitable expansion of aquaculture in the Western Cape through high quality research, technology and development. AP

The Institute for Animal Production is involved in aquaculture research and future plans include -

- oyster brood stock selection;
- research in collaboration with the University of Stellenbosch and local oyster farmers;
- further tilapia trials and market research;
- goldfish breeding;
- small scale aquaponics systems development;
- rural freshwater fishery research; and
- a possible mullet grow-out trial.

REFERENCES
WHY THE FOCUS ON AQUACULTURE?

Wild-harvest fisheries are fully over-exploited because of over-fishing (Haylor, Briggs & et al, 2003). The global demand for fish on the other hand is growing and is still projected to increase for high end value fish products. At present, fisheries are unable to match their supply with this growing demand for fish protein. Taking a long-term view, aquaculture continues to offer the only viable alternative to continued depletion of South Africa’s natural fisheries. Thus, sustainable aquaculture should be a priority in order to meet the strong demand for fish (DEAT, 2006). South Africa is already affected with the challenges emerging regarding the sector’s ability to meet future demand for fish. Presently, the country is importing more fish products than it exports. Furthermore, rapid population growth and urbanisation has slowly led to changes in the demand and supply of animal protein like fish.

Also, fish is becoming more expensive compared to other food products because of its high demand. To date, this increased demand is expected to cause the price of high value fish to increase by 15% in real terms by 2020 (DEAT, 2006). This situation brings an opportunity for aquaculture producing areas to take advantage of the current situation and prioritise on increasing aquaculture production. The Western Cape, as being one of these areas, has the opportunity to improve its aquaculture production. This is clearly supported by the sector’s potential and promising projections.

WHY IS AQUACULTURE CONSIDERED IMPORTANT IN THE WESTERN CAPE?

Despite the immature nature of aquaculture in South Africa, the industry has immense potential in enhancing its contribution to the country’s economy. There are substantial numbers of commercially successful operations showing considerable growth potential in the country particularly in the Western Cape. A recent survey (Botes et al., 2009) revealed that more than 39% of the aquaculture farming enterprises in South Africa were situated in the Western Cape, making the province the most significant contributor to national Gross Domestic Product (GDP) in terms of export-based aquaculture production.

Various marine species such as abalone, silver kob, dusky kob, yellowtail, seaweed, mussel, and oyster and freshwater species such as trout, ornamentals, koi carp, tilapia and marron are currently cultivated in the province. However, different types of production systems ranging from capital intensive marine pump ashore units to freshwater aquaculture (pond, cage and tank production) need to be developed further in the province to provide additional opportunities for its citizens and make a meaningful contribution towards livelihoods improvement and job creation.

Conversely, while aquaculture is often considered a source of animal protein for household consumption, a high potential also exists for cash income generation. Botes et al (2006) indicated that there is a steady increase in employment since 2001 in this sub-sector. In 2008 the aquaculture industry created 2192 jobs, of the total number of people employed more than 60% of the employment originates from the Western Cape. Recent study revealed that employment in the sector grew up by 80% between 2005 and 2008 (Botes et al, 2009). This is due to the fact that the fishing industry demands a high labour force and thus employment creation is guaranteed. With noted great potential for job creation, a huge number of people also benefit indirectly in the processing industry (feeds, processing, security, transport, packaging, manufacturing of equipment, research, government services).

Furthermore, aquaculture is viewed as a commercially viable industry providing export opportunities. South Africa is a net-exporter of fish products; in 2007 the country’s fish industry (wild and aquaculture) exported its production to a value estimated at R3.4 billion. In both value and percentage, South African fish exports plays an important role in some foreign countries, for
example: Spain imports 25.1% of South African fish products, Italy 13.3%, Japan 10.3%, Hong Kong 9.4%, United States 7.5%, Australia 6.0%, Portugal 4.8%, the United Kingdom 4.2% and other countries 18.5% (SARS, 2007). Of the countries mentioned, Spain is South Africa’s single largest fish importer (figure 1).

In comparison to other provinces of the country, the Western Cape is a leading exporter of aquaculture products. The province exported fish products (wild and aquaculture) with a total value of R2.9 billion in 2007 (figure 2), representing more than 80% of the total country’s fish exports (SARS, 2007). The data indicates that, of the total exports estimated at R3.4 million, 84% comes from the Western Cape, 3% Gauteng, 12% Eastern Cape and 1% from KwaZulu-Natal.

The data above clearly shows that success in the aquaculture sector can contribute and play a key role in the overall development of the province. The sector provides improved livelihoods for certain areas in the province where work opportunities are otherwise limited or do not exist. Hence, aquaculture development can be seen as bringing with it cash to areas which may not merit consideration for other types of industry.

MARKET OPPORTUNITIES IN THE AQUACULTURE INDUSTRY

Based on the projected global demand and supply of fisheries products, the opportunity for sustained growth of aquaculture production is good. With the decline in fisheries, it is likely that aquaculture produced products may fill some of these vacated market niches (Nomura, 2009). Markets for fish and fish products are becoming increasingly lucrative at a global level as dietary shifts in middle to high income market segments progressively favour seafoods. It is therefore increasingly a seller’s market (Karaan, undated). Even despite the global downturn, global rising demand for aquaculture products continues and is projected to grow at 3.8% per annum until 2020. The increasing short supply of fish products on the local market (e.g. hake and linefish) has resulted in a sharp rise in prices, making aquaculture an increasingly viable economic activity. This clearly indicates that both local and export opportunities still exist for aquaculture farmers and producers. Therefore, this offers excellent opportunities for fish farmers to enter this market (Shipton and Britz, 2007). Furthermore, because of population increase, health considerations (white meat being regarded as part of healthier diet), it appears that the current demand of fish is not expected to drop any time soon (Leteše, 2002).

Nevertheless, as promising as it may be in terms of market opportunities, consumers on the other hand are becoming more quality conscious and demanding. Consumer preferences have led to increased changing demand for fishery products. This shift in preferences is related to changes in dietary habits toward nutritional foods. Consumers are interested in greater diversity in food products. This, however, means that future growth will be driven largely by market requirements and consumer perceptions.

CONCLUSION

The potential to develop an equitable aquaculture sector in the Western Cape is positive, provided that certain economic and environmental issues are taken in consideration. This sector has shown considerable growth in the region, especially for the most growing species such as trout and abalone. Technically, tilapia is another potential species; however, there are questions concerning warming climate and infrastructure. The aquaculture sector has the potential to directly and indirectly contribute to the growth of the local, provincial and national economy through being competitive and sustainable at national, provincial, local and community level. It will also create gainful employment and livelihood improvement opportunities. The province has sufficient water resources to justify a larger industry, but care has to be exercised on the environmental effects which will require controls. Based on the fact that the Western Cape is both a leading producer and exporter of fish products in South Africa, the sector has the ability to better support the livelihoods of poor coastal communities. Hence, priority should be given to issues related to promotion of sustainable aquaculture.

REFERENCES

DEDT (2007). Fishing and Aquaculture Strategy for the Western Cape

SARS (2007).
Bepaling van watergebruiksdoeltreffendheid van aartappels deur satelietwaarneming

deur A S Roux Pr Ing (Direkteur: Volhoubare Hulpbronbestuur)

Water is 'n skaars hulpbron in ons provinsie en gevolglik is een van die Departement van Landbou: Wes-Kaap se kerndoelwitte die verhoging in effektiwiteit van die benutting van besproeiingswater.

In 'n vorige projek is die effektiwiteit van benutting van besproeiingswater vir die besproeiing van wyn- en tafeldruwe in die Hexvallei, Worcester en Franschoek-Paarl-Stellenbosch areas bepaal, deur gebruik te maak van satelietwaarneming en tegnieke ontwikkel deur WaterWatch, 'n instansie van Wageningen in Nederland wat beskou word as die wêreldleier op dié gebied. Die werklike evapotranspirasie word gemeet deur gebruik te maak van die infra-rooispektrum van die satelietbeelde. Die produksie per besproeiingsblok word gedeel deur die evapotranspirasie, wat dan die watergebruiks-doeltreffendheid (kg druiwe geproduseer per kubieke meter water) lever. Hierdie syfer word dan gebruik om die effektiwiteit van benutting van besproeiingswater deur die verskillende produsente te vergelyk. (Sien diagram op die oorkantse bladsy met resultate vir die 2004/05 en 2005/06 seisoene as voorbeeld.)

Die tegniek is as suksesvol bewys in hierdie projek deurdat 'n baie goeie korrelasie gekry is tussen die watergebruiks-doeltreffendheid bereken deur middel van fisiese data-insameling in die veld oor 'n periode van etlike jare en dié verkry deur die satelietwaarneming. Deur gebruik te maak van hierdie tegniek word baie duur en tydsame veldwaarnemings uitgeskakel en kan die beperkte tegnieke personeel vir ander projekte aangewend word.

SANDVELDPROJEK

Daar is reeds vir baie jare bekommernis oor die volhoubaarheid van die huidige omvang van die gebruik van grondwater vir die verbouing van aartappels in die Sandveld. Daar word vermoed dat die onttrekking meer is as die jaarlikse aanvulling en dat die huidige omvang van die boerdery dus nie volhoubaar oor die langtermyn gaan wees nie. In 'n onlangse geohidrologiese studie is daar bepaal dat die ondergrondse water in die Sandveld voorkom in ses afsonderlike kompartemente en is die jaarlikse aanvulling vanaf reënval beraam. Ten einde die volhoubaarheid van die aartappelboerdery te evalueer is dit nodig om te bepaal hoeveel water jaarliks vir die doel onttrek word. Daar is egter geen watermeters in die Sandveld waarmee wateronttrekking gemonitor kan word nie en 'n alternatiewe metode moes dus hiervoor ontwikkel word.

Na aanleiding van die bogemelde projek in die Hexvallei, Worcester en Franschoek-Paarl-Stellenbosch areas is 'n soortgelyke
projek saamgestel om met behulp van satelietwaarneming die werlike watergebruik in die Sandveld te bepaal, wat dan ’n aanduiding gaan verskaf van die volhoubaarheid ten opsigte van beskikbaarheid van besproeiingswater in die gebied. ’n Vergelyking kan dan vir elke van die 6 ondergrondse akwifere in die Sandveld bepaal word ten opsigte van werlike onttrekking van grondwater en die aanvulling van die ondergrondse waterbronne.

Die projek word ook gebruik word om die impak wat beide aartappel- en rooibostee-verbouing op die biodiversiteit van die area gehad het, oor die afgelope 9 jaar te bepaal. Daar gaan ook gepoog word om die ekonomiese waarde van die besproeiingswater te bepaal.

Aangesien die satelietbeelde wat vir die Sandveldprojek gebruik gaan word ook die hele Olifantsrivier dek, kan die watergebruiksdoeltreffendheid van sitrusboorde in die Citrusdal/Clanwilliam gebied asook die watergebruiksdoeltreffendheid van wyn- en tafeldruide in die Trawal/Klawer/Vredendal gebied terselfdertyd bepaal word teen geen addisionele koste nie. (Sien die afbeelding van die area wat gedek word deur die satelietbeeld.)

Die projek is amptelik op 19 Oktober 2009 bekendgestel en word gesamentlik deur die WNNR en WaterWatch van Nederland ondernem. Befondsing word voorsien deur die Departement van Landbou: Wes-Kaap, die Departement van Waterwese en die Suid-Afrikaanse Nasionale Biodiversiteits-Instituut (SANBI). Die projek sal teen September 2010 voltooi wees. AP
The food security support has been the major focus of various governmental strategies in any under-developing country. Commonly, these countries have been characterised by a high unemployment rate, poverty, high birth rate and chronic illness that results to the lack of access to affordable food. As a result, several food strategies have been developed and implemented through various interventions. Notably, most of these interventions include the promotion of household gardens, communal and church gardens for home consumption and poultry farming. These interventions are regarded as one of the survival strategies that could enable the communities to access affordable and nutritious food that is enriched with vitamins and proteins.

On these household food security strategies, common support by government has been on vegetables and chicken farming. Little has been said about the potential of rabbit farming as an alternative food security strategy. Therefore, this article shows the potential of rabbit farming as a food security strategy. In so doing, firstly, it provides a brief history on rabbit farming which is followed by the production and market potential of the rabbit farming, expected financial cost and also pros and cons of rabbit farming. Lastly, for consideration, the recommendations are presented at the end of the article.

A GLANCE AT THE HISTORY OF RABBIT FARMING

The history of rabbit farming can be traced back from 1000 BC. Rabbits were first discovered by Phoenician sailors at about 1000 BC when they reached the shores of Spain. In Roman times, the rabbit was spread throughout the Roman Empire as a game animal. In the middle ages, monasteries began keeping rabbits and finally domesticated them for home consumption. The meat of domesticated rabbits was a more delectable dish than the meat of the tougher wild rabbit (FAO, 1986).

As the generation progressed through, rabbit farming was also seen to be practiced in other parts of Europe in the early middle ages though it was not accepted by the Europeans as a popular animal until the 19th century. At the turn of the 20th century, breeding rabbits became a popular activity. Rabbits were bred for both their meat and pelts. In World War I, and during the Great Depression and World War II, people were encouraged by governments to raise rabbits to help feed themselves and also the soldiers. After World War II, when other meats again were discovered, production of rabbit meat greatly declined (FAO, 1986).

Commercial rabbit farming was introduced to South-Africa through trading with other parts of the world. At that time, it was still legal to slaughter and sell rabbit meat directly from the farm (Neethling, 2009). When the law changed in 2000, allowing the slaughter of rabbits only in abattoirs, most people gave up rabbit farming in South-Africa. As a result, rabbit farming is still one of the unpopular farming practices in South African communities. With respect to its potential as a household farming practice and its simple production method, the next section outlines its production system and its acceptable low fat content.

RABBIT FARMING: AN ALTERNATIVE FOOD SECURITY STRATEGY

Rabbit’s meat is compared favourably with other animals as converters of vegetable feed to meat of low fat content. For its production, rabbits feed on pellets. These pellets are formulated to provide the rabbits with all the necessary nutritional needs throughout its production life. Since pellets are quite expensive, more traditional feeds like oats, greens, roots, carrots and hay or a combination of traditional feed and pellets can also be given. However, Neethling states that the pellets feed should not contain urea as it is poisonous to the rabbits. If traditional feed is given, caution should be taken not to change from dry to green feed too often as this can lead to diarrhea (Neethling, 2009).

To produce one kilogram live mass meat, the rabbit only requires 3,5 kilograms of vegetable feed. In South-Africa, a rabbit diet could include lucerne and vegetables. Food that should not be given include potato plants, tomatoes and cabbage. Rabbit meat is highly valued for its nutritional and dietary properties, because it is a lean meat with low-fat content and less cholesterol than other meats. This nutritional value is stated in table 1 below.

<table>
<thead>
<tr>
<th>Livestock Type</th>
<th>Protein %</th>
<th>Fat %</th>
<th>Calories (gm)</th>
<th>Cholesterol (gm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit</td>
<td>22.8</td>
<td>6.3</td>
<td>1247.4</td>
<td>1559.3</td>
</tr>
<tr>
<td>Beef</td>
<td>29.9</td>
<td>10.1</td>
<td>1729.4</td>
<td>2069.6</td>
</tr>
<tr>
<td>Pork</td>
<td>27.7</td>
<td>14.8</td>
<td>1701.0</td>
<td>2041.2</td>
</tr>
<tr>
<td>Chicken</td>
<td>28.9</td>
<td>7.4</td>
<td>1530.9</td>
<td>2286.0</td>
</tr>
</tbody>
</table>

ADVANTAGES AND DISADVANTAGES OF RABBIT FARMING

In order to determine the economic feasibility and sustainable farming practice of rabbit farming, the following sub-sections provide the advantages and disadvantages of rabbit farming.
Rabbit farming involves pleasure, status, and hobby farming. Rabbits cannot tolerate heat and require a constant supply of water during the day.

RABBIT FARM INFRASTRUCTURE (HOUSING) AND ITS ENVIRONMENT

The best way to house rabbits is in wire cages, sheds, or concrete structures. Cages should be at least 500mm x 500mm and 300mm high. They should also be placed 700mm – 1m above the ground. This makes cleaning easier, as droppings and urine fall through the wire floor onto the concrete floor. From the floor, the droppings could then be removed and washed down regularly.

Ideally, rabbits should be kept at a temperature of 18-25ºC. At a temperature of 35ºC, rabbits will start experiencing heat stress. Heat stress will cause major rabbit mortalities and reproductive failure. Effective ventilation is required to control extreme temperatures and also to remove ammonia. Poor ventilation will result in respiratory problems and susceptibility to bacterial infection. Natural ventilation is relatively low cost and can be established by having flaps installed instead of windows. The flaps can be opened or closed depending on the temperature. This kind of structure enhances the production capacity and produces a high value product for the market. This production and market potential is discussed in the next section below.

PRODUCTION AND MARKET POTENTIAL

The two most common types of rabbit breeds that are in high demand in the international markets are the Nieu-Zealand White and the Californian. The Nieu-Zealand White has many desirable traits like rapid growth rate, good carcass quality, and good mothering ability. The Californian gives a higher carcass yield and has a higher meat to bone ratio than the Nieu-Zealand White. Breeding Californian bucks (male) with Nieu-Zealand

Advantages of rabbit farming

Advantages of rabbit farming (FAO (1986), CSIRO Livestock Industries (2002) and Samkol and Luke (2008)) have been noted as follows:

- Rabbits can be reared in a backyard or garden, since the required space is very little.
- Rabbits can convert cellulose-rich plants to protein; no other animal is able to do that.
- Rabbit meat is a niche product in the South-African market.
- They can also easily live off kitchen scraps and vegetables.
- Rabbit manure can be used as fertilizer.
- The production capacity of rabbit farming is excessively high and can possibly meet the protein requirement of the community.
- Rabbit farm management is not too intensive.
- The community can access meat at an affordable price.

Disadvantages of rabbit farming

The following factors as some of the disadvantages of rabbit farming (Samkol and Lukefahr (2008) and Neethling (2009)) were presented:

- Transporting rabbits across South-Africa is very expensive.
- Rabbits are delicate animals.
- Not popular to the market.
- Not strongly associated as part of a meal.
White does (female) results in a hybrid breed with all these good characteristics. For both breeds does (female) reach sexual maturity at the age of five months old, and bucks (male) when they are six months old. A mature buck will service about eight does. There is no heat period as with other animals, instead the doe ovulates in response to the buck’s advancement that influences the matting period. The pregnancy lasts for 31 days and after five days of kindling the doe is ready to mate again. During hot weather, rabbits may not breed as readily. Breeding should then only be done early in the morning or late evening.

A doe can raise a maximum of eight kittens. If a litter is more than eight, fostering is necessary. This could be done by putting the excess kittens with a doe that has a smaller litter of the same age. Kittens are weaned at four to five weeks of age. Kittens are ready for slaughter at about twelve weeks of age. Assuming that only six of the eight kittens per litter survive for slaughtering, one doe can produce 24 kittens for slaughtering per year. The most acceptable slaughter weight is approximately 2.8-3 kilograms. Dressing percentage is 50%, meaning each kitten will yield 1.5 kilograms of meat. In the Western Cape there is only one abattoir that slaughters rabbits and can be found in Hopefield.

Although there is no real big formal market for rabbit meat in South-Africa, a niche market does exist. These markets are specifically for restaurants and catering for tourists. It has also been found that the Germans and Chinese are the great consumers of rabbit meat. In South Africa the imported rabbit meat can also be found in health shops such as Woolworths. Like any farming practices, farming rabbits is also associated with production and marketing costs. Tables 2 to 4 show these costs.

Table 2: Expected Financial Cost of Rabbit Farming

<table>
<thead>
<tr>
<th>Item Needed</th>
<th>Cost of Item</th>
<th>Where to Get Item</th>
<th>Cost of Transport (if required)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbit pellets</td>
<td>R299.46/25 kg bag</td>
<td>Any pet shop</td>
<td></td>
</tr>
<tr>
<td>Rabbit cages</td>
<td>R889.20 each</td>
<td>JohnFMarshall – Company in Gauteng</td>
<td>Depends on shipment size</td>
</tr>
<tr>
<td>Rabbit cage stands</td>
<td>R250.00 each</td>
<td>JohnFMarshall – Company in Gauteng</td>
<td>Depends on shipment size</td>
</tr>
<tr>
<td>Rabbit nest-boxes</td>
<td>R221.45 each</td>
<td>JohnFMarshall – Company in Gauteng</td>
<td>Depends on shipment size</td>
</tr>
<tr>
<td>Rabbit feed hoppers</td>
<td>R82.08 each</td>
<td>JohnFMarshall – Company in Gauteng</td>
<td>Depends on shipment size</td>
</tr>
<tr>
<td>Rabbits</td>
<td>R180.00 - R200.000 each</td>
<td>Mike Turner – based in KZN</td>
<td>Worked out on AA rates (per kilometer) + tollgate fees</td>
</tr>
<tr>
<td>Total</td>
<td>R 1942.19</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Table 3: Expected infrastructural cost per household for first production cycle

<table>
<thead>
<tr>
<th>Items</th>
<th>Quantity of Items</th>
<th>Cost/Item</th>
<th>Total cost of Items</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cages</td>
<td>5</td>
<td>R889.20 each</td>
<td>R4 446.00</td>
</tr>
<tr>
<td>Cage stands</td>
<td>5</td>
<td>R250.00 each</td>
<td>R1 250.00</td>
</tr>
<tr>
<td>Nest-boxes</td>
<td>2</td>
<td>R221.45 each</td>
<td>R442.90</td>
</tr>
<tr>
<td>Feed hoppers</td>
<td>5</td>
<td>R82.08 each</td>
<td>R410.40</td>
</tr>
<tr>
<td>Total</td>
<td>17 items</td>
<td>R 1442.73</td>
<td>R 6 549.30</td>
</tr>
</tbody>
</table>

Table 4: Production Stock for first production cycle

<table>
<thead>
<tr>
<th>Item</th>
<th>Quantity</th>
<th>Cost/Item</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Female</td>
<td>2</td>
<td>R180.00 each</td>
<td>R360.00</td>
</tr>
<tr>
<td>Male</td>
<td>1</td>
<td>R200.00 each</td>
<td>R200.00</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>R 560.000</td>
<td></td>
</tr>
</tbody>
</table>

RABBIT FARMING FEEDING SYSTEM

The following is the feeding system of both the adults and kitten rabbits. Specific to this is the expected feeding capacity of buck, does and kittens.

Adult rabbits
- **Buck:**
 - 1 buck eats 80 g feed per day for 4 months (4 months = 124 days)
 - 80 g feed per day x 124 days = 9 920 g (9.92 kg) feed
- **Does:**
 - Two does eat 160 g feed per day for 4 months (4 months = 124 days)
 - 160 g feed per day x 124 days = 19 840 g (19.84 kg) feed
CONCLUSIONS
Rabbits are very prolific animals, with one doe providing enough meat per year to feed an entire family. It is a fast growing animal and can supply enough protein content of the daily meals of the communities, because its meat is highly nutritious and healthy. Though the pellets are expensive, rabbit manure is highly rated and could be used as fertilizer for household gardens, because the nutrients are returned to the soil through the manure. Since rabbit meat is an acceptable product in the communities, the promotion of rabbit farming as an alternative food security strategy will definitely increase the nutritional value of the daily meals of the indigent communities.

RECOMMENDATIONS
Due to the user-friendly farming type of rabbits and the nutritional value of rabbit meat, this type of farming is suitable for household farming. As a start, one buck and two does could be used to determine its practical potential, because of their fast rate of multiplying. It also has commercial potential with regards to selling the meat to the neighbours or small shops in the communities. Rabbit farming can also be done in the vegetable garden; that way, the rabbits can be fed from the garden, and fewer pellets have to be bought, thereby minimising cost.

REFERENCES
Samkol P, Lukefahr SD (2008). A Challenging role for Organic Rabbit Production Towards Poverty Alleviation In South East Asia. 9th World Rabbit Congress, June 2008, Verona, Italy
FAO (1986). Background and History of Rabbit Farming- Animal Production and Health Series.
McNitt J (2009). Rabbit Housing. Southern University Agricultural Research and Extension Center. AP

By now the need for Monitoring and Evaluation, or more simply put, showing the proof of evidence (and changes) in relation to the work done, has been established. The performance agreements signed between the national Ministers and the President have been reported on in the newspapers, and the need to show impact by respective government departments is (and actually has been) an important matter for the last few years. The Auditor-General indicated that performance information will be audited and in fact has done so for the last two years. Service delivery protests are highlighted that citizens in the country are unhappy with delivery by spheres of government.

The above statements raised the importance of measuring, proving and recording work output and outcomes of the Department of Agriculture: Western Cape. The question (and in some cases the dilemma) of showing proof of evidence, is how much should be spent on fulfilling these requirements and how to do this? I believe that if too much is spent on these requirements then it takes funding away from the critical services that our clients need. But on the other hand, if the Department cannot prove the outputs and outcomes, then the future of this Department can be jeopardised.

SO WHAT NOW?
Well, the first challenge is to amalgamate and consolidate all information systems in the Department for integration and to start the process of seamless service delivery. This decision has been taken with the understanding that it is a process, and that technological environment must receive attention. The second ‘challenge’ is for all staff members to understand the importance of departmental information for value-adding, and the need to streamline systems, processes and working arrangements. The third ‘challenge’ is the basis from which progress (outcomes) are measured – for whom, when, how much and the impact. Farmers and farm workers are our primary clients who take the services provided and use them to their advantage. Therefore the question arises: is formalised farmer (and farm worker) registration necessary or not?

You are welcome to contact us on 021-808 5111 for your comments and suggestions in this regard.

<table>
<thead>
<tr>
<th>Infrastructure</th>
<th>R 6 549.30</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rabbits</td>
<td>R 560.00</td>
</tr>
<tr>
<td>Feed</td>
<td>R 1 197.84</td>
</tr>
<tr>
<td>Total</td>
<td>R 8 307.14</td>
</tr>
</tbody>
</table>

Table: 5 Total estimated cost per household (first production cycle)

Kittens
- Month one the kittens needs no feed, they get milk from the does
- Months 2 and 3 each kitten eats 80 g feed per day
- Twelve kittens x 80 g feed x 62 days (2 months) = 59 520 g (59.52 kg) feed

Total amount of feed for kittens
59.52 kg + 19.84 kg + 9.92 kg = 89.28 kg

Cost of feed for kittens
4 bags of pellets (each bag = 25 kg) at R299.46/ bag = R1 197.84
Skoledae by Elsenburg
navorsingsplaas lok leerders na landbou

Die jaarlike skoledae vir laerskool leerlinge is vanjaar oor drie dae by die Departement van Landbou Wes-Kaap se hoofkantoor op Elsenburg navorsingsplaas aangebied. Vanjaar het 1 200 leerders die plaas besoek en met verskeie aspekte van landbou en landbou loopbane kennis gemaak. Die besoek het oor 3 ure gestrek en die kinders het kennis gemaak met skape, hoenders, varke, akwakultuur, volstruise, kalwers, bokke en perde en het ook die melkportaal besoek. Hierdie program maak deel uit van die Departement se strewe om as deel van sy menslike hulpbronontwikkelingsplan ook die jeug by landbou te betrek en landbouloopbane te bevorder.

Die beloning op die harde werk om die drie dae moontlik te maak en te organiseer, is vasgevang in ‘n e-pos van ‘n ouer van een van die leerders – “Ek moet julle komplimenteer oor hoe julle die kinder-besoek organisie. Elke kind het ‘n Agriculture/Landbou branded “sun visor”, potlood houer, uitveër, toewou notaboek-stel met ‘n pen, notaboek met ‘n aarbei op, liniaal, ‘n pen wat 4 kleure kan skryf, skerpmaker, ens. gekry Dit is fantastiese bemarking en my kind gaan die dag nie gou vergeet nie. Hulle het ook varkies opgetel, gesien hoe word die koeie gemelk en die volstruise was ook ‘n hoogtepunt! Dit is fantasies om te sien watter moeite julle vir die kinders doen!” AP

Bedryfsuitstappies deur Hortgro Dienste

Hortgro Dienste, voorheen bekend as die Sagtevrugte-produsente Trust, is ‘n diensorganisasie wat op 1 Oktober 1997 in die lewe geroep is as gevolg van herstrukturering van die Sagtevrugte Industrie en die uifasering van die Sagtevrugteraad. Een van die hooffunksies van Hortgro Dienste is opleiding en ontwikkeling. Om hierdie rede het Hortgro Dienste inligtingstoere in die vrugtebedryf bekendgestel. Leerders word bekendgestel aan die vrugtebedryf en besoek instansies in die Stellenbosch omgewing soos SAPO (SA Plantverbeterings Organisasie), SIT Africa (Steriele Insek Tegniek), die Universiteit van Stellenbosch en die Kaapse Insituut vir Landbou-Opleiding: Elsenburg (KILO).

Ongeveer 190 leerders in grade 10-12 van verskeie skole het KILO besoek tussen April en Mei van hierdie jaar. Die skole was: Skurweberg Sekondêr (Koue Bokkeveld), Charleston Hill (Paarl), Paulus Joubert (Paarl) en Luckhoff Hoërskool (Stellenbosch). Slegs leerders wat Wetenskap, Wiskunde en Landbou-Tegnologie op skool neem, het die uitstappies meegemaak.

Met hul aankoms by Elsenburg was die leerders met ‘n ligte ontbyt verwelkom en was verskillende inligtingsbrosjures aan hulle verskaf. Verder was hulle deur verteenwoordigers van die sub-programme Hoër Onderwys en Voortge sette Onderwys– en Opleiding ingelig oor die verskillende onderrigprogramme wat deur KILO aangebied word. Die fasilitete, kursussen en kampuslewe was uitgebeeld en verskillende loopbaan-geleenthede, sowel as beurse wat daarmee gepaard gaan was aan hulle verduidelik.

Die uitstappies duur nie langer as ‘n normale skooldag nie en leerders word per bus by hul onderskeie skole opgelaai en aan die einde van die dag terugbesorg. Daar is geen koste verbonde aan die uitstappies nie en vervoerkoste word deur Hortgro Dienste gedek.

KONTAKBESONDERHEDE:
Hortgro Dienste: Elouise van Zyl – 021 870 2900
KILO: Hoër Onderwys: Olivia Jacobs – 021 808 7686
KILO: Voortgesette Onderwys-en Opleiding: Zenovia Parker – 021 808 7000

Met hul aankoms by Elsenburg was die leerders met ‘n ligte ontbyt verwelkom en was verskillende inligtingsbrosjures aan hulle verskaf. Verder was hulle deur verteenwoordigers van die sub-programme Hoër Onderwys en Voortgesette Onderwys– en Opleiding ingelig oor die verskillende onderrigprogramme wat deur KILO aangebied word. Die fasilitete, kursussen en kampuslewe was uitgebeeld en verskillende loopbaan-geleenthede, sowel as beurse wat daarmee gepaard gaan was aan hulle verduidelik.

Die beloning op die harde werk om die drie dae moontlik te maak en te organiseer, is vasgevang in ‘n e-pos van ‘n ouer van een van die leerders – “Ek moet julle komplimenteer oor hoe julle die kinder-besoek organiseer. Elke kind het ‘n Agriculture/Landbou branded “sun visor”, potlood houer, uitveër, toewou notaboek-stel met ‘n pen, notaboek met ‘n aarbei op, liniaal, ‘n pen wat 4 kleure kan skryf, skerpmaker, ens. gekry Dit is fantasiese bemarking en my kind gaan die dag nie gou vergeet nie. Hulle het ook varkies opgetel, gesien hoe word die koeie gemelk en die volstruise was ook ‘n hoogtepunt! Dit is fantasties om te sien watter moeite julle vir die kinders doen!” AP

KONTAKBESONDERHEDE:
Hortgro Dienste: Elouise van Zyl – 021 870 2900
KILO: Hoër Onderwys: Olivia Jacobs – 021 808 7686
KILO: Voortgesette Onderwys-en Opleiding: Zenovia Parker – 021 808 7000
Neljanine Soman was born on 4 May 1983 in Oudtshoorn - one of seven children of Mr Jan and Mrs Nellie Soman. She started her school career in 1989 at PJ Badenhorst Primary and went on to Dysselsdorp Secondary School in 1996. In 2000 she matriculated at Dysselsdorp Secondary School with an average of 62% and started working shortly thereafter at Checkers as an Administration Clerk.

Agriculture has always been fascinating for Neljanine, and in 2008 she grabbed the opportunity with both hands and enrolled at the Cape Institute for Agricultural Training: Further Education and Training Centre at Oudtshoorn. She completed the NQF level 1 National Certificate in Plant Production. During her academic year (2009), Neljanine excelled in her studies, remaining amongst the top performers in her class. Once again, she applied for academic articulation through a process of recognition of prior learning (RPL), taking into account her final matric results, as well as her overall competency level achieved for the learnership. This resulted in her being accepted to the B.Agric programme in 2010.

This is truly testimony of self-direction, commitment and dedication to follow her dreams in becoming an Agriculturist. By displaying these characteristics, she was awarded a bursary to the value of R20 000 by Novare Actuaries, an empowerment subsidiary of the Mvela Holdings group. At the annual graduation ceremony in December 2009, Neljanine showed that she was more than an average student by obtaining various awards (such as the UAP award for the best overall Learnership student within the Western Cape, as well as the UAP award for the best Learnership student in Pomology). Her goal is to improve her life by building a career in agriculture. She also plans to further her studies up to Masters Level and to be a leader in the agricultural industry in the near future.

Henry Cook receives the AVCASA Award for Service to Society & Environment

The 2010 AVCASA Congress in Gauteng was held on 6 May 2010. During a Gala Dinner Henry Cook, senior lecturer, Further Education and Training (FET) at the Cape Institute for Agricultural Training, received an award for service to the society and environment from AVCASA. (The award is made in recognition of individuals who play a continuously critical role in providing training and assistance to agricultural stakeholders as far as strategies to pest management and disease resistance in animal and crop production is concerned.) The Annual AVCASA Congress was attended by various agricultural associations, officials from the Department of Agriculture, Forestry and Fisheries. The certificate ceremony was officiated by the National Deputy Minister of Agriculture, Forestry and Fisheries, Dr Pieter Mulder.

AVCASA launched the training programme in 1997 in Gauteng. Mr Cook, who has more than 23 years service within the public sector, is one of sixteen Master Trainers in South Africa who was selected to undergo the pilot training in 1997 with the aim of rolling out the training initiative within respective provinces. Mr. Cook, currently a Senior Lecturer within the FET sub-programme, continues to present this course to the smallholder- and commercial farming groups. This type of training is vital for producers throughout the country, as all end users of chemicals need to be trained as part of the global gap accreditation for exporting produce. This course forms part of the various courses offered by the FET-sub-programme.

Mr Cook acknowledges the support from the Western Cape Department of Agriculture, industry and his colleagues for enabling him to contribute through this training initiative to a safer and healthier crop production.